点云质量评估_点云配准中常用的评价指标

目录

1.概述

2.豪斯多夫距离(Hausdorff Distance,HD)

3.倒角距离(Chamfer Distance,CD)

4.陆地移动距离(Earth Mover’s Distance,EMD)


1.概述

在点云配准问题中,我们通常会用相似性测度来评价两组点云之间的匹配程度,或作为迭代求解的代价方程(cost function),常见的相似性测度有均方误差(Root Mean Square Error(RMSE)、最大公共点集(Largest Common Pointset,LCP) 等。此外,还有豪斯多夫距离(Hausdorff Distance,HD)、倒角距离(Chamfer Distance,CD)和陆地移动距离(Earth Mover’s Distance,EMD)等指标也可被用于评价点云之间的匹配程度。

2.豪斯多夫距离(Hausdorff Distance,HD)

Hausdorff距离描述了度量空间中真子集之间的距离。假设有两个集合

 则这两个集合之间的Hausdorff距离定义为:

  •  其中,H(A,B) 被称为集合A和B之间的双向Hausdorff距离,是Hausdorff距离的最基本形式;
  • ‖·‖是点集A和B点集间的距离范式(如:L2或Euclidean距离).
  • 下面的式子中的h(A,B)和h(B,A)分别称为从A集合到B集合和从B集合到A集合的单向Hausdorff距离.
    • 即h(A,B)实际上首先对点集A中的每个点ai,到距离ai点最近的B集合中点bj之间的距离‖ai-bj‖,(比如A集合中有100个点,就有100个上述最小值)然后进行排序, 然后取该距离中的最大值(100个最小值中的最大值)作为h(A,B)的值. h(B,A)同理可得.
  • 由上面的式子知,双向Hausdorff距离H(A,B)是单向距离h(A,B)和h(B,A)两者中的较大者,
  • 它度量了两个点集间的最大不匹配程度.

改进的Hausdorff距离

3.倒角距离(Chamfer Distance,CD)

给定两个点集S1 和S2, 它们之间的Chamfer Distance定义为:

4.陆地移动距离(Earth Mover’s Distance,EMD)

给定两个点集S1 和S2, 它们之间的Earth Mover’s Distance定义为:

SAC-IA(Sample Consensus Initial Alignment)是一种点云算法,具有高效确的特点。该算法主要用于将多个局部点云成全局点云,并且能够从初始点云对齐中获取相对较好的初始转换矩阵。 SAC-IA算法主要包含以下步骤: 1. 选择随机采样的点对:从参考点云和目标点云中随机选择一定数量的点对。 2. 计算初步变换矩阵:通过计算两个点对的刚性变换矩阵,估计初始的点云对齐情况。 3. 通过采样一致性检验筛选优质点对:对于剩余的点对,通过计算其与估计的初步变换矩阵的拟合程度进行评估,筛选出与估计变换矩阵一致的点对。 4. 重新计算最优变换矩阵:通过使用筛选出的优质点对重新计算最优的刚性变换矩阵,以进一步提高精度。 5. 收敛判断:比较新计算的变换矩阵与之前的变换矩阵之间的差异,如果差异小于设定的阈值,则认为算法已经收敛。 SAC-IA算法主要依靠采样一致性检验的方式,通过迭代计算出最优的刚性变换矩阵。与传统的ICP算法相比,SAC-IA在计算效率和确性方面都有所提升。通过随机采样和筛选优质点对的方式,SAC-IA算法能够尽可能避免由于噪声或离群点的存在而导致的误问题。 总的来说,SAC-IA是一种高效确的点云算法,适用于多个局部点云和构建全局点云。它在多个领域,如计算机视觉、机器人导航和工业制造中都具有广泛的应用前景。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值