国产大模型赋能零售智能化:库存预测与精准营销系统全流程实战解析
关键词
零售行业、国产大模型、库存预测、销售趋势建模、精准营销、用户画像、DeepSeek、Qwen、多模数据融合、SKU 分析、私域运营、智能推荐
摘要
在消费多元化、供应链精细化与市场竞争加剧的背景下,零售行业的库存优化与营销决策正从经验导向走向数据驱动与智能推理。本文面向商超、连锁零售、品牌 DTC 与线上商城等场景,系统剖析如何基于国产大模型(DeepSeek + Qwen)构建城市级门店库存预测引擎与多维度营销推荐系统。文章从销售预测、需求波动建模、用户画像构建、商品意图理解、内容生成、营销链路优化等关键任务出发,结合真实落地案例、系统部署架构与 Prompt 设计逻辑,展示零售智能化从数据接入到智能执行的完整工程路径。内容涵盖时序建模、SKU 分类、客群标签识别、多模内容生成与策略迭代闭环,为零售企业构建可复制、可控制、可落地的智能体平台提供实战参考。
目录
- 零售行业智能化升级背景与传统体系瓶颈
- 国产大模型在零售系统中的价值定位与模型职责划分
- 系统总架构设计:从销售预测到营销内容全链路智能联动
- DeepSeek 驱动的库存预测模型构建与时序趋势建模机制
- Qwen 实现的商品语义理解与用户画像生成路径
- 精准营销内容