本文为博主原创文章,未经博主允许不得转载。
本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。
点云中经常会用到的一个概念是体素(Voxel)。
介绍体素之前先介绍一下图像像素。图像一般是按行列的像素存储的,也就是通常说的图像分辨率。对于WxH大小的图片,相当于把图片划分成如下的网格,然后每个网格里的颜色或者灰度值不同。这样就称为了一幅图像

对应到三维空间,点云是由点组成的,通常每个点由x、y、z三个坐标组成。三个坐标对应二维图像中的灰度值。类比与二维图像,三维空间有以下几个区别:
(1)二维图像的网格是均匀分布的,而三维点云分布在三维空间,同时是非均匀分布的。
(2)二维图像相邻像素的位置坐标相差一个1单位像素,而三维点云中相邻点的间距并不是一个固定值。
为了让三维点云也具备和二维图像一样的均匀分布,体素将整个三维空间
本文介绍了点云中的体素概念,通过对比图像像素,阐述了体素在三维空间中的作用,包括其用于点云的均匀化和下采样。点云体素化有助于处理非均匀分布的点云数据,常用于点云处理和三维目标检测等领域。
订阅专栏 解锁全文
1620

被折叠的 条评论
为什么被折叠?



