SLAM综述(3)-视觉与惯导,视觉与深度学习SLAM

本文详细介绍了视觉惯性里程法SLAM(VIO)的发展,包括早期研究、开源系统如SSF、MSCKF、ROVIO、OKVIS和VINS等。此外,还探讨了深度学习在视觉SLAM中的应用,如语义SLAM、特征检测、识别与分割、尺度恢复以及动态SLAM的挑战与未来。文章列举了多个相关研究,展示了深度学习如何增强SLAM的性能和鲁棒性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SLAM包含了两个主要的任务:定位与构图,在移动机器人或者自动驾驶中,这是一个十分重要的问题:机器人要精确的移动,就必须要有一个环境的地图,那么要构建环境的地图就需要知道机器人的位置。

本系列文章主要分成四个部分:

在第一部分中,将介绍Lidar SLAM,包括Lidar传感器,开源Lidar SLAM系统,Lidar中的深度学习以及挑战和未来。

第二部分重点介绍了Visual SLAM,包括相机传感器,不同稠密SLAM的开源视觉SLAM系统。

第三部分介绍视觉惯性里程法SLAM,视觉SLAM中的深度学习以及未来。

第四部分中,将介绍激光雷达与视觉的融合。

视觉SLAM的稳定性是一项技术挑战。因为基于单目的视觉SLAM需要初始化、尺度的不确定性和尺度漂移等问题[1]。尽管立体相机和RGB-D相机可以解决初始化和缩放的问题,但也存在一些不容忽视的问题,如运动速度快、视角小、计算量大、遮挡、特征丢失、动态场景和光照变换等。针对以上这些问题传感器的融合方案逐渐流行起来,IMU与相机融合的视觉里程计成为研究热点。

视觉与惯导

论文[2][3][4]是比较早期对VIO进行的一些研究。[5][6]给出了视觉惯导里程计的数学证明。而论文[7]则使用捆集约束算法对VIO进行稳健初始化。特别是tango[8]、Dyson 360 Eye和holo

SLAM(Simultaneous Localization and Mapping)是一种在机器人航中同时估计自身位置和构建环境地图的技术。然而,高程漂移是一个常见的挑战,特别是在三维激光雷达数据处理中,它可能致地图重建的精度下降。 关于SLAM高程漂移的文献综述,可以关注以下几个方面: 1. **误差来源**:早期的研究着重于分析传感器噪声、动态物体跟踪错误、局部最优解等因素如何致高程估计偏差(如Huang & Heng, 2007)。 2. **滤波算法改进**:一些论文探讨了通过优化滤波器,如粒子滤波(PF)、扩展卡尔曼滤波(EKF)或更先进的鲁棒滤波器(如UKF),来减少高度估计中的噪声和漂移(Kuwata et al., 2008)。 3. **特征点匹配**:研究者强调了关键点检测和匹配在三维空间的重要性,稳定的关键点可以帮助减小位姿变化的影响(Stachniss & Burgard, 2005)。 4. **全局优化**:通过引入全局优化技术,如图搜索或最优路径规划,可以在大范围地图上进行精确定位和调整(Newcombe et al., 2011)。 5. **深度学习**:近年来,深度学习也被用于SLAM系统中,利用端到端的学习方法来改善高程估计的准确性(Engel et al., 2014; Li et al., 2019)。 6. **多传感器融合**:结合视觉、激光雷达、等多种传感器的数据,能够提高定位的可靠性,降低高程漂移(Whelan & Fox, 2015)。 **相关问题--**: 1. 什么因素通常SLAM中的高程漂移问题最严重? 2. SLAM中的哪些策略已经被证明能有效地缓解高程漂移? 3. 当前解决SLAM高程漂移的前沿研究趋势是什么?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云PCL公众号博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值