视觉SLAM十四讲——第三讲笔记

本文详细介绍了视觉SLAM中的关键概念,包括旋转矩阵在SO(3)群中的特性,特殊欧式群SE(3)的变换矩阵,Eigen库的应用,欧拉角的ZYX表示及其万向锁问题,以及四元数的优势,如紧凑且无奇异性。此外,还提及了Eigen库中处理旋转的类型,如Matrix3d、Matrix3f以及AngleAxisd,并讨论了如何在旋转矩阵、旋转向量和四元数之间进行转换。
摘要由CSDN通过智能技术生成

1.旋转矩阵是一个行列式为1的正交矩阵——SO(n); 用来描述相机的旋转

2.变换矩阵,为了方便描述多次变换,把旋转和平移写在一个矩阵里,使整个关系变为线性关系。——特殊欧式群(special Euclidean group)SE(3).

3.Eigen的使用:

Eigen::Matrix<float,2,3>matrix_23;//前三个参数:数据类型,行,列
//Eigen::Vector3d实质上是Eigen::Matrix<double,3,1>; Matrix3d、MatrixXd等等;
//注意矩阵的维度和类型
Eigen::Matrix<double,2,1>result=matrix_23.cast<double>()*v_3d;//cast->强制类型转换
matrix_33 = Eigen::Matrix3d::Random();      // 随机数矩阵
    cout << matrix_33 << endl << endl;

    cout << matrix_33.transpose() << endl;      // 转置
    cout << matrix_33.sum() << endl;            // 各元素和
    cout << matrix_33.trace() << endl;          // 迹
    cout 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值