1 | 【数理知识】曲率 curvature,主曲率 principal curvature,高斯曲率 Gaussian curvature,平均曲率 mean curvature |
主曲率我们分别用 κ min \kappa_{\min} κmin 和 κ max \kappa_{\max} κmax 来表示。
高斯曲率
K
K
K
K
=
κ
min
⋅
κ
max
K = \kappa_{\min} \cdot \kappa_{\max}
K=κmin⋅κmax
平均曲率
H
H
H
H
=
κ
min
+
κ
max
2
H = \frac{\kappa_{\min} + \kappa_{\max}}{2}
H=2κmin+κmax
surface type | gaussian curvature | mean curvature | principle curvature minimum | principle curvature maximum |
---|---|---|---|---|
椭圆点 | K > 0 K>0 K>0 | H ≠ 0 H \ne 0 H=0 | κ min > 0 \kappa_{\min} > 0 κmin>0 (或 κ min < 0 \kappa_{\min} < 0 κmin<0) | κ max > 0 \kappa_{\max} > 0 κmax>0 (或 κ max < 0 \kappa_{\max} < 0 κmax<0) |
抛物点或平面 | K = 0 K=0 K=0 | H ≠ 0 H \ne 0 H=0 | κ min > 0 \kappa_{\min} > 0 κmin>0 (或 κ min = 0 \kappa_{\min} = 0 κmin=0) | κ max = 0 \kappa_{\max} = 0 κmax=0 (或 κ max < 0 \kappa_{\max} < 0 κmax<0) |
双曲点 | K < 0 K<0 K<0 | H = 0 H = 0 H=0 | κ min < 0 \kappa_{\min} < 0 κmin<0 | κ max > 0 \kappa_{\max} > 0 κmax>0 |
1. 平面点及抛物点
2. 椭圆点
3. 双曲点
surface type | principle curvature minimum | principle curvature maximum | gaussian curvature | mean curvature |
---|---|---|---|---|
平面点 | κ min = 0 \kappa_{\min} = 0 κmin=0 | κ max = 0 \kappa_{\max} = 0 κmax=0 | K = 0 K=0 K=0 | H = 0 H = 0 H=0 |
抛物点(上凸) | κ min = 0 \kappa_{\min} = 0 κmin=0 | κ max > 0 \kappa_{\max} > 0 κmax>0 | K = 0 K=0 K=0 | H > 0 H > 0 H>0 |
抛物点(下凹) | κ min < 0 \kappa_{\min} < 0 κmin<0 | κ max = 0 \kappa_{\max} = 0 κmax=0 | K = 0 K=0 K=0 | H < 0 H < 0 H<0 |
椭圆点(上凸) | κ min > 0 \kappa_{\min} > 0 κmin>0 | κ max > 0 \kappa_{\max} > 0 κmax>0 | K > 0 K>0 K>0 | H > 0 H > 0 H>0 |
椭圆点(下凹) | κ min < 0 \kappa_{\min} < 0 κmin<0 | κ max < 0 \kappa_{\max} < 0 κmax<0 | K > 0 K>0 K>0 | H < 0 H < 0 H<0 |
双曲点 | κ min < 0 \kappa_{\min} < 0 κmin<0 | κ max > 0 \kappa_{\max} > 0 κmax>0 | K < 0 K<0 K<0 | H = 0 H = 0 H=0 |
\begin{aligned} \end{aligned}