【数理知识】曲面类型及其曲率取值范围,包括主曲率 principal curvature,高斯曲率 Gaussian curvature,平均曲率 mean curvature

文章详细阐述了曲率、主曲率(κ_min和κ_max)、高斯曲率(K)以及平均曲率(H)的概念,并根据不同曲率值分析了平面点、抛物点和椭圆点、双曲点的特征。高斯曲率是两个主曲率的乘积,而平均曲率则是它们的算术平均值。这些几何概念在理解和描述曲面性质时至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1【数理知识】曲率 curvature,主曲率 principal curvature,高斯曲率 Gaussian curvature,平均曲率 mean curvature

主曲率我们分别用 κ min ⁡ \kappa_{\min} κmin κ max ⁡ \kappa_{\max} κmax 来表示。

高斯曲率 K K K
K = κ min ⁡ ⋅ κ max ⁡ K = \kappa_{\min} \cdot \kappa_{\max} K=κminκmax

平均曲率 H H H
H = κ min ⁡ + κ max ⁡ 2 H = \frac{\kappa_{\min} + \kappa_{\max}}{2} H=2κmin+κmax

在这里插入图片描述

surface typegaussian curvaturemean curvatureprinciple curvature minimumprinciple curvature maximum
椭圆点 K > 0 K>0 K>0 H ≠ 0 H \ne 0 H=0 κ min ⁡ > 0 \kappa_{\min} > 0 κmin>0 (或 κ min ⁡ < 0 \kappa_{\min} < 0 κmin<0) κ max ⁡ > 0 \kappa_{\max} > 0 κmax>0 (或 κ max ⁡ < 0 \kappa_{\max} < 0 κmax<0)
抛物点或平面 K = 0 K=0 K=0 H ≠ 0 H \ne 0 H=0 κ min ⁡ > 0 \kappa_{\min} > 0 κmin>0 (或 κ min ⁡ = 0 \kappa_{\min} = 0 κmin=0) κ max ⁡ = 0 \kappa_{\max} = 0 κmax=0 (或 κ max ⁡ < 0 \kappa_{\max} < 0 κmax<0)
双曲点 K < 0 K<0 K<0 H = 0 H = 0 H=0 κ min ⁡ < 0 \kappa_{\min} < 0 κmin<0 κ max ⁡ > 0 \kappa_{\max} > 0 κmax>0

1. 平面点及抛物点

在这里插入图片描述

2. 椭圆点

在这里插入图片描述

3. 双曲点

在这里插入图片描述

在这里插入图片描述


surface typeprinciple curvature minimumprinciple curvature maximumgaussian curvaturemean curvature
平面点 κ min ⁡ = 0 \kappa_{\min} = 0 κmin=0 κ max ⁡ = 0 \kappa_{\max} = 0 κmax=0 K = 0 K=0 K=0 H = 0 H = 0 H=0
抛物点(上凸) κ min ⁡ = 0 \kappa_{\min} = 0 κmin=0 κ max ⁡ > 0 \kappa_{\max} > 0 κmax>0 K = 0 K=0 K=0 H > 0 H > 0 H>0
抛物点(下凹) κ min ⁡ < 0 \kappa_{\min} < 0 κmin<0 κ max ⁡ = 0 \kappa_{\max} = 0 κmax=0 K = 0 K=0 K=0 H < 0 H < 0 H<0
椭圆点(上凸) κ min ⁡ > 0 \kappa_{\min} > 0 κmin>0 κ max ⁡ > 0 \kappa_{\max} > 0 κmax>0 K > 0 K>0 K>0 H > 0 H > 0 H>0
椭圆点(下凹) κ min ⁡ < 0 \kappa_{\min} < 0 κmin<0 κ max ⁡ < 0 \kappa_{\max} < 0 κmax<0 K > 0 K>0 K>0 H < 0 H < 0 H<0
双曲点 κ min ⁡ < 0 \kappa_{\min} < 0 κmin<0 κ max ⁡ > 0 \kappa_{\max} > 0 κmax>0 K < 0 K<0 K<0 H = 0 H = 0 H=0

\begin{aligned} \end{aligned}

Ref

  1. 曲面的基本分类
  2. 法曲率、主曲率、高斯曲率、平均曲率
  3. 三角网格表面高斯曲率的计算与可视化
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zhao-Jichao

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值