nuScenes数据集在mmdetection3d中的使用

本文介绍了nuScenes数据集在mmdetection3d中的使用。包括数据集下载,因完整数据集约300G,作者仅下载约30G的Part1数据集并做部分代码修改;数据处理部分需生成用于训练和评价的文件和文件夹;训练评价以CenterPoint单GPU为例,指出因仅用Part1数据集评价会报错及解决办法。

nuScenes数据集在mmdetection3d中的使用

(一)nuScenes数据集下载

博客:nuScenes数据集使用
mmdetection3d官方对数据集下载和使用的指南
写在前面:
1.完整的nuScenes数据集约有300G,我在实际使用时仅下载了Part1数据集(约30G)。但是在应用nuScenes官方代码时,不完整的数据集会导致报错。因此,我做了部分修改。
2.目前主要针对基于激光雷达的3D目标检测,因此Camera数据仅用于可视化,Radar数据未做使用。【后续使用时,再做更新】

1. 目录结构
# 官方
mmdetection3d
├── data
│   ├── nuscenes
│   │   ├── maps
│   │   ├── samples
│   │   ├── sweeps
│   │   ├── v1.0-test
|   |   ├── v1.0-trainval

我的目录结构
在这里插入图片描述

2. 下载指南

nuScenes下载地址
针对nuScenes下载数据集各部分的内容,在博客中有

### 使用 MMDetection3D BEVDet 模块训练 nuScenes 数据集 #### 准备工作 为了使用 MMDetection3D 的 BEVDet 模块来训练 nuScenes 数据集,环境配置和数据准备至关重要。确保已经安装了最新版本的 MMDetection3D 并通过 `pip install` 或者源码编译的方式完成了必要的依赖项设置[^1]。 ```bash git clone https://github.com/open-mmlab/mmdetection3d.git cd mmdetection3d pip install -r requirements/build.txt pip install -e . ``` #### 配置文件调整 对于 nuScenes 数据集的支持,MMDetection3D 提供了一系列预定义的配置文件用于不同类型的模型训练。针对 BEVDet 模型,需找到对应的配置文件并根据需求进行适当修改。通常这些配置位于 `configs/bevdet/` 文件夹内[^2]。 #### 数据处理 nuScenes 是一个多传感器融合的数据集,包含了 LiDAR 点云以及摄像头图像等多种模态的信息。因此,在开始训练之前,需要按照官方指南将原始数据转化为适合输入到 BEVDet 模型的形式。这一步骤涉及到点云裁剪、坐标变换等一系列操作,具体可以参照文档中的说明。 #### 训练过程 启动训练可以通过命令行工具实现,指定好相应的配置路径即可: ```bash python tools/train.py configs/bevdet/bevdet_nus.py --work-dir work_dirs/bevdet_nus/ ``` 这里假设使用的配置文件名为 `bevdet_nus.py`,而输出日志及相关保存会存放在 `work_dirs/bevdet_nus/` 下面。如果希望监控训练进度或调试参数,则可以在上述基础上加入更多选项如 `--validate` 来定期验证性能指标变化情况。 #### 测试与评估 当训练完成后,可利用测试脚本对模型效果做进一步检验: ```bash python tools/test.py configs/bevdet/bevdet_nus.py checkpoints/latest.pth --eval bbox ``` 此命令将会加载最新的 checkpoint 对整个测试集合执行推理,并计算边界框预测精度作为评价标准之一。
评论 17
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值