1.简介:
ORB-SLAM是由Raul Mur-Artal,J. M. M. Montiel和Juan D. Tardos于2015年发表在IEEE Transactions on Robotics。
(1)项目主页网址为:ORB-SLAM;
(2)论文地址为:ORB-SLAM: A Versatile and Accurate Monocular SLAM System. ;
(3)ORB-SLAM项目源码采用C++编写,运用到了OpenCV库,DBow库,g2o库,Eigen库,其中,ORB-SLAM2中还会用到Pangolin库,地址如下ORB-SLAM(说明:单目方案,ROS下的代码)github地址为https://github.com/raulmur/ORB_SLAM。
ORB-SLAM2是ORB-SLAM的改进版本,它与ORB-SLAM的区别主要在(https://www.zhihu.com/question/49030315)
- (a) 它提供了立体相机与RGBD相机的接口;
- (b) 摆脱了对ROS的依赖;
- (c) 显示模块改用了Pangolin;
- (d) ORB-SLAM中做特征匹配时, 对特征尺度的计算方式貌似有误,在ORB-SLAM2的代码中进行了修正。
论文链接为https://128.84.21.199/pdf/1610.06475.pdf
源码github地址为https://github.com/raulmur/ORB_SLAM2
ORB-SLAM是一个基于特征点的实时单目SLAM系统,在大规模的、小规模的、室内室外的环境都可以运行。该系统对剧烈运动也很鲁棒,支持宽基线的闭环检测和重定位,包括全自动初始化。该系统包含了所有SLAM系统共有的模块:
跟踪(Tracking)、建图(Mapping)、重定位(Relocalization)、闭环检测(Loop closing)。ORB-SLAM2在ORB-SLAM的基础上,还支持标定后的双目相机和RGB-D相机。
2.框架介绍(借用sylvester0510大神总结的)
可以看到ORB-SLAM2主要分为三个线程进行,分别是Tracking、LocalMapping和LoopClosing。三个线程分别存放在对应的三个文件中,分别是Tracking.cpp、LocalMapping.cpp和LoopClosing.cpp文件。
(1)跟踪(Tracking)
这一部分主要工作是从图像中提取ORB特征,根据上一帧进行姿态估计,或者进行通过全局重定位初始化位姿,然后跟踪已经重建的局部地图,优化位姿,再根据一些规则确定新的关键帧。
(2)建图(LocalMapping)
这一部分主要完成局部地图构建。包括对关键帧的插入,验证最近生成的地图点并进行筛选,然后生成新的地图点,使用局部捆集调整(Local BA),最后再对插入的关键帧进行筛选,去除多余的关键帧。
(3)闭环检测(LoopClosing)
这一部分主要分为两个过程,分别是闭环探测和闭环校正。闭环检测先使用WOB进行探测,然后通过Sim3算法计算相似变换。闭环校正,主要是闭环融合和Essential Graph的图优化。
系统简述为
参考:
1.https://blog.csdn.net/o_ha_yo_yepeng/article/details/80031395
2.https://blog.csdn.net/u010128736/article/details/53157605
3.https://www.zhihu.com/question/49030315
4.ORBSLAM:http://webdiis.unizar.es/~raulmur/MurMontielTardosTRO15.pdf
5.ORBSLAM2:https://128.84.21.199/pdf/1610.06475.pdf