随机过程:齐次泊松过程的定义

独 立 增 量 性 = 只 与 时 间 长 短 有 关 , 与 时 间 起 点 无 关 平 稳 增 量 性 = 独 立 增 量 性 + i i d 独立增量性= 只与时间长短有关,与时间起点无关\\ 平稳增量性=独立增量性+iid ==+iid

齐次泊松过程

N t 计 数 函 数 : ( 0 , t ] 时 间 发 生 N 次 事 件 N_t计数函数:(0,t]时间发生N次事件 Nt0,t]N
如 果 N t 满 足 以 下 条 件 , 称 其 为 泊 松 过 程 : 如果N_t满足以下条件,称其为泊松过程: Nt
1. N 0 = 0 2. { N t } 为 独 立 增 量 过 程 , ( 在 不 相 交 的 时 间 区 间 发 生 事 件 的 个 数 独 立 ) 3. N s + t − N s 分 布 密 度 是 参 数 为 ( t × λ ) 的 泊 松 分 布 , ( λ t ) k k ! e − λ t , k 为 时 间 间 隔 发 生 的 事 件 个 数 1.N_0=0 \\ 2.\{N_t\}为独立增量过程,\tiny(在不相交的时间区间发生事件的个数独立)\normalsize \\ 3.N_{s+t}-N_s 分布密度是参数为(t×\lambda)的泊松分布,\\ \color{red} \frac{(\lambda t)^k}{k!}e^{-\lambda t},k为时间间隔发生的事件个数 1.N0=02.{Nt},()3.Ns+tNs(t×λ),k!(λt)keλt,k

事件到达"时间间隔" X n X_n Xn

∵ P ( X 1 > t ) = P ( N t = 0 ) = e − λ t P ( X 2 > t ∣ X 1 = s ) = P ( N s , s + t = 0 ) = P ( N t = 0 ) = e − λ t ∴ 每 个 X n 是 i i d 的 ( 1 − e − λ t ) ′ \because P(X_1>t)= P(N_t=0)=e^{-\lambda t}\\ P(X_2>t|X_1=s)= P(N_{s,s+t}=0)=P(N_t=0)=e^{-\lambda t}\\ \therefore 每个X_n是iid的(1-e^{-\lambda t})' P(X1>t)=P(Nt=0)=eλtP(X2>tX1=s)=P(Ns,s+t=0)=P(Nt=0)=eλtXniid1eλt

( X 1 ∣ N t = 1 ) ∼ U ( 0 , t )   ( 均 匀 分 布 ) 先 求 分 布 函 数 P ( X 1 ≤ s ∣ N t = 1 ) = P ( X 1 ≤ s , N t = 1 ) P ( N t = 1 ) = P ( N s = 1 ) P ( N s , t = 0 ) P ( N t = 1 ) = s t (X_1|N_t=1) \sim U(0,t) \ \tiny (均匀分布)\\ 先求分布函数P(X_1\leq s|N_t=1) =\frac{P(X_1\leq s,N_t=1)}{P(N_t=1)}=\frac{P(N_s=1)P(N_{s,t}=0)}{P(N_t=1)}=\frac{s}{t} (X1Nt=1)U(0,t) ()P(X1sNt=1)=P(Nt=1)P(X1s,Nt=1)=P(Nt=1)P(Ns=1)P(Ns,t=0)=ts
( S 1 ∣ N t = 1 ) ∼ U ( 0 , t )   ( 均 匀 分 布 ) (S_1|N_t=1) \sim U(0,t) \ \tiny (均匀分布) (S1Nt=1)U(0,t) ()

事件n发生时间 S n = X 1 + X 2 + … + X n S_n=X_1+X_2+…+X_n Sn=X1+X2++Xn

S n : 发 生 时 间 , 等 于 x 1 + x 2 + … + x n S n 是 n , λ 的 Γ 分 布 S_n: 发生时间,等于 x1+x2+ …+ x_n\\ \tiny S_n是n,\lambda的\Gamma分布 Sn:,x1+x2++xnSnn,λΓ

计 算 S n 的 条 件 概 率 密 度 计算S_n的条件概率密度 Sn

在 N t = n 的 条 件 下 , n 个 事 件 到 达 时 刻 , 的 联 合 概 率 密 度 为 n ! t n 证 明 : P ( t i − δ t ≤ S i ≤ t i ∣ N t = n ) / ( δ t ) n 其 中 P ( t i − δ t ≤ S i ≤ t i ∣ N t = n ) = P ( N t i − δ t , t i = 1 , N t i − 1 , t i − δ t = 0 ) / P ( N t = n ) 带 入 泊 松 过 程 定 义 即 可 在N_t=n的条件下,n个事件到达时刻,的联合概率密度为\frac{n!}{t^n}\\ 证明:\tiny P(t_i-\delta t\leq S_i \leq t_i|N_t=n)/(\delta t)^n \\ 其中P(t_i-\delta t\leq S_i \leq t_i|N_t=n)=P(N_{t_i-\delta t,t_i}=1,N_{t_{i-1},t_i-\delta t}=0)/P(N_t=n)带入泊松过程定义即可 Nt=nn,tnn!P(tiδtSitiNt=n)/(δt)nP(tiδtSitiNt=n)=P(Ntiδt,ti=1Nti1,tiδt=0)/P(Nt=n)

这 与 [ 0 , t ] 上 的 个 均 匀 独 立 分 布 的 随 机 变 量 , 进 行 排 序 的 联 合 分 布 一 样 。 即 在 已 知 [ 0 , t ] 发 生 的 事 件 个 数 为 n 的 条 件 下 , S i 也 有 这 样 的 性 质 。 这与[0,t]上的个均匀独立分布的随机变量,进行排序的联合分布一样。\\即在已知[0,t]发生的事件个数为n的条件下,S_i也有这样的性质。 [0,t][0,t]nSi


计 算 S n 的 联 合 概 率 密 度 计算S_n的联合概率密度 Sn

在这里插入图片描述

泊松分布与指数分布
二项分布&泊松分布&泊松过程&指数分布
泊松过程是一个计数过程

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值