源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
YOLOv12震撼来袭:彻底重新定义实时目标检测
YOLOv12: Redefining Real-Time Object Detection》是一篇技术性与实用性兼备的文章,详细阐述了YOLOv12的突破性设计及其在实时目标检测中的领先地位。通过注意力机制的引入和架构优化,YOLOv12不仅延续了YOLO系列的优良传统,还推动了人工智能视觉技术的边界。文章鼓励读者探索这一模型,并在实际应用中体验其强大功能。原创 2025-04-01 00:32:19 · 123 阅读 · 0 评论 -
PlantDoc数据集深度解析与前沿研究方法探索
PlantDoc数据集是由印度理工学院(IIT)的研究团队于2019年开发并公开的一个用于视觉植物疾病检测的数据集,旨在解决农业中植物疾病早期检测的挑战。PlantDoc的创建背景源于传统实验室控制环境下采集的植物图像(如PlantVillage数据集)无法有效适应真实农田场景的需求,而真实场景下的图像数据稀缺成为限制计算机视觉技术应用的主要瓶颈。:PlantDoc填补了真实场景数据的空白,但其局限性提示研究者在应用时需结合数据增强、迁移学习或合成数据生成等技术,以弥补样本量不足和分布不均的问题。原创 2025-03-31 10:38:41 · 260 阅读 · 0 评论 -
YOLO11:智能作物健康监测的革命性技术
深入了解Ultralytics YOLO11 如何通过植物病害检测和杂草检测重新构想实时作物健康监测。原创 2025-03-31 10:32:38 · 47 阅读 · 0 评论 -
交通指示识别案例
https://pdf.hanspub.org/jisp2024133_82670377.pdfhttps://616pic.com/tupian/jiaotongzhishipai.htmlhttps://blog.csdn.net/qq_34184505/article/details/129405873https://blog.csdn.net/qq_32892383/article/details/136505299原创 2025-03-20 09:54:27 · 41 阅读 · 0 评论 -
目标检测卷王YOLO卷出新高度:YOLOv9问世
如今的深度学习方法重点关注如何设计最合适的目标函数,使得模型的预测结果能够最接近真实情况。同时,必须设计一个适当的架构,可以帮助获取足够的信息进行预测。现有方法忽略了一个事实,即当输入数据经过逐层特征提取和空间变换时,大量信息将会丢失。本文将深入研究数据通过深度网络传输时数据丢失的重要问题,即信息瓶颈和可逆函数。我们提出了可编程梯度信息(PGI)的概念来应对深度网络实现多个目标所需的各种变化。PGI可以为目标任务计算目标函数提供完整的输入信息,从而获得可靠的梯度信息来更新网络权值。原创 2024-02-23 22:45:32 · 4571 阅读 · 0 评论 -
拥挤场景中的渐进式端到端目标检测(Deformable-DETR 实现)含源码
具体来说,我们首先选择接受的查询容易产生真正的积极预测,然后根据先前接受的预测改进其余的嘈杂查询。实验表明,我们的方法可以显着提高拥挤场景中基于查询的检测器的性能。配备我们的方法,稀疏 RCNN 在具有挑战性的问题上实现了 92.0% AP、41.4% MR^−2 和 83.2% JICrowdHuman数据集,在处理拥挤场景时优于指定的基于框的方法 MIP。此外,所提出的方法对拥挤度具有鲁棒性,仍然可以在像 CityPersons 和 COCO 这样的适度和轻微拥挤的数据集上获得一致的改进。原创 2023-05-29 20:13:19 · 676 阅读 · 0 评论 -
OFGF光流引导特征:用于视频动作识别的快速且稳健的运动表示【含源码】
论文地址:https://openaccess.thecvf.com/content_cvpr_2018/papers/Sun_Optical_Flow_Guided_CVPR_2018_paper.pdf这个 repo 包含论文的实现代码:Optical Flow Guided Feature: A Fast and Robust Motion Representation for Video Action Recognition,Shuyang Sun,Zhanghui Kuang,Lu Sheng,W原创 2023-05-29 20:08:43 · 649 阅读 · 0 评论 -
完整复现YOLOv8:包括训练、测试、评估、预测阶段【本文源码已开源,地址在文章末尾】
(这里主要是在colab.research.google.com实现的,本地的配置也是类似的方法)YOLOv8是一种用于目标检测的深度学习算法。主要参考:https://github.com/ultralytics/ultralytics/blob/main/README.zh-CN.md。yolov8的权重:https://github.com/ultralytics/assets/releases。yolov8的文档:https://v8docs.ultralytics.com/原创 2023-01-13 11:31:49 · 16521 阅读 · 6 评论 -
基于新版OpenCV5(C++)+OpenVINO Toolkit案例算法模型示例使用(一条语义分割与目标检测示例搞懂OpenVINO模型部署机制)
编译所有demo示例: ./build_demos.sh 根据提示,编译的可执行文件在/root/omz_demos_build。算法内容如下:案例很多,从自然语言到计算机视觉基本都有,很丰富,自己按照文档说明使用就行。本文只是简单过一下实现方法。到编译好的路径下找到偶:mask_rcnn_demo(也可以复制到当前目录使用)为了发表,还是将可执行文件复制到当前目录。使用模型转换器的示例:时间慢,耐心等待。下载模型列表为:models.lst。找到路径,倒入相关参数就可以运行了。原创 2022-09-22 01:23:41 · 2805 阅读 · 5 评论 -
基于新版Opencv5.x(C++)流媒体视频流实现网页浏览器人脸检测
基于opencv5(C++)流媒体视频流实现网页浏览器人脸检测下载软件链接: https://pan.baidu.com/s/1OZcUVnpae5v4WJIUYRXyxg 提取码: t7ew。原创 2022-09-17 02:26:16 · 2069 阅读 · 0 评论 -
ubuntu18.04平台:新版OpenCV5集成算法使用mjpeg-streamer(流媒体c++库)实现视频流及网页浏览器访问
GStreamer 是一个用于构建音频和视频处理管道的工具包。管道可以将视频从文件流式传输到网络,或者向记录添加回声,或者(我们最感兴趣的)捕获 Video4Linux 设备的输出。Gstreamer 最常用于为Totem等图形应用程序提供动力,但也可以直接从命令行使用。没有两个编码用例是完全相同的。您首选的工作流程是什么?您的处理器是否足够快以实时编码高质量视频?您是否有足够的磁盘空间来存储原始视频然后在事后处理它?你想在 DVD 播放器中播放你的视频,还是它在你的VLC版本中工作就足够了?原创 2022-09-16 21:02:06 · 1164 阅读 · 0 评论 -
新版OpenCV5 (C++)版本部署目标检测:YOLOv4打包成可用AI软件
1、打包成linux软件,后续增加QT功能2、软件增加了加密功能,后续会开源代码,敬请期待3、增加计算使用剩余天数。原创 2022-09-14 22:40:54 · 1907 阅读 · 0 评论 -
OpenCV5 (C++与Python)版本dnn目标检测:YOLO
opencv5:yolo系列模型:原创 2022-09-13 01:06:46 · 554 阅读 · 0 评论 -
yolov4视频目标检测:使用C++版本联合CUDA11.2的OpenCV 5.x编译生成opencv-python==5.x进行推理
代码后续分享,opencv+cuda编译分享。原创 2022-09-04 00:10:18 · 973 阅读 · 0 评论 -
C++版本的OpenCV 5.x编译生成opencv-python==5.x(GPU版本)接口并进行调用
要么复制要么软连接,如果还是不行就使用这条命令全局搜索find / -name cv2*.so,其中cv2.cpython-36m-x86_64-linux-gnu.soo才是你生成的,用这个就行。由于只是简单的操作一张图片,所以从运行速度上没有多大变化,当经过一些复杂像素计算就能体现GPU的优点了。原创 2022-09-01 21:04:44 · 2643 阅读 · 2 评论 -
【强力推荐】基于Nvidia-Docker-Linux(Ubuntu18.04)平台:新版OpenCV5.x(C++)联合CUDA11.1(GPU)完美配置视觉算法开发环境
OpenCV 5.x 即将推出,但是官方还没有给出直接安装版,需要自己编译。OpenCV(开源计算机视觉库: http: //opencv.org)是一个包含数百种计算机视觉算法的开源库。该文档描述了所谓的 OpenCV 2.x API,它本质上是一个 C++ API,而不是基于 C 的 OpenCV 1.x API(C API 已被弃用,并且自 OpenCV 2.4 版本以来未使用“C”编译器进行测试)OpenCV 具有模块化结构,这意味着该包包含多个共享或静态库。...原创 2022-08-24 21:14:40 · 2404 阅读 · 0 评论 -
目标检测系列算法:HybridNets端到端感知网络
论文摘要:端到端网络在多任务处理中变得越来越重要。一个突出的例子是驾驶感知系统在自动驾驶中的重要性日益增加。本文系统地研究了用于多任务处理的端到端感知网络,并提出了几个关键优化以提高准确性。首先,本文提出了基于加权双向特征网络的高效分割头和框/类预测网络。其次,本文提出了为加权双向特征网络中的每个级别自动定制的anchor。第三,本文提出了一种有效的训练损失函数和训练策略来平衡和优化网络。......原创 2022-08-09 11:37:55 · 1892 阅读 · 0 评论 -
目标检测系列算法:简单实现YOLO语音TTS报警系统(检测人员入侵室内或室外)
YOLO人员检测语音TTS报警系统源码。原创 2022-07-31 18:09:49 · 1979 阅读 · 0 评论 -
目标检测系列算法:YOLOv7代码复现
YOLOv7在5FPS到160FPS范围内的速度和准确度都超过了所有已知的物体检测器,并且在GPUV100上30FPS或更高的所有已知实时物体检测器中具有最高的准确度56.8%AP。原创 2022-07-23 18:01:29 · 3151 阅读 · 0 评论 -
目标检测系列算法:YOLOv6代码复现
YOLOv6 是一个专用于工业应用的单阶段目标检测框架,具有硬件友好的高效设计和高性能。YOLOv6-nano 在 COCO val2017 数据集上达到 35.0 mAP,T4 上使用 TensorRT FP16 进行 bs32 推理,达到 1242 FPS,YOLOv6-s 在 COCO val2017 数据集上达到 43.1 mAP,T4 上使用 TensorRT FP16 进行 bs32 推理,达到 520 FPS。YOLOv6 由以下方法组成:Backbone 和 Neck 的硬件友好型设计具有原创 2022-06-29 21:05:21 · 1811 阅读 · 0 评论 -
目标检测系列算法复现2:Darknet-YOLO-CUDA11-OpenCV4(Ubuntu平台)推理测试
目录1、推理1.1、检测一张图像1.2、摄像头实时检测1.3、视频检测参考1、推理1.1、检测一张图像./darknet detector test cfg/coco.data cfg/yolov3.cfg weights/yolov3.weights data/dog.jpg1.2、摄像头实时检测出现如下情况:backend_plugin.cpp (383) getPluginCandidates Found 0 plugin(s) for UEYECouldn't connect to.原创 2022-04-09 22:26:35 · 2742 阅读 · 0 评论 -
目标检测系列算法复现1:Darknet-YOLO-CUDA11-OpenCV4(Ubuntu平台)
你看到的如下模型系列将在后续的本博客文章中连载,欢迎学习,交流技术,分享心得。目录1、darknet 论文及源码工程复现1.0、 开发环境配置1.1、工程获取与编译1.2、demo测试2、makefil文件解析2.0、GPU(CUDA-CUDNN)2.0.1、CUDNN+CUDA11.1调用2.0.2、GPU算力修改2.0.3、g++ makefile编译需要添加的参数2.0.4、OpenCV4版本号或者安装位置的调用接口修改第一处修改位置 调用opencv4指定的安装依赖及动态库位置目录第二处修改位原创 2022-04-09 20:06:37 · 3287 阅读 · 0 评论 -
AI模型设计:yolov1+darknet+yolov2,3,4,5,X全系列资料汇总[源码仓库]标星收藏
欢迎关注,记得转发点赞评论分享,标星github,谢谢!源码链接:https://github.com/KangChou/Cver4s原创 2022-01-29 10:20:14 · 3845 阅读 · 0 评论 -
目标检测实战<05>:最新YOLOX模型训练COCO数据集
零、yolox算法思想介绍原文链接:目标检测实战<03>:最新YOLOX算法背后的主要思想一、COCO数据集准备参考链接:https://blog.csdn.net/qq_41185868/article/details/82939959本文训练数据集使用的是coco2014,使用方法同2017版本。COCO数据集的80个类别—YoloV3算法采用的数据集person(人) bicycle(自行车) car(汽车) motorbike(摩托车) aeroplane(飞机)bus(公原创 2021-08-15 20:57:59 · 1887 阅读 · 0 评论 -
目标检测基础<04>:非最大抑制 (NMS)核心算法思想
典型的对象检测管道有一个用于生成分类建议的组件。临posals 只不过是感兴趣对象的候选区域。大多数方法在特征图上使用滑动窗口,并根据在该窗口中计算的特征分配前景/背景分数。邻域窗口在某种程度上具有相似的分数,被视为候选区域。这导致了数百个提案。由于提议生成方法应该具有高召回率,因此开发者们在此阶段保持宽松的约束,并进行了使用和更新。然而,通过分类网络处理这么多提案是很麻烦的。这导致了一种基于一些标准(这很快就会看到)过滤提议的技术,称为非最大抑制。网络管理系统:输入:提案框 B 的列表,对应的置信度原创 2021-08-14 13:21:27 · 271 阅读 · 0 评论 -
PyTorch目标检测实战<03>:最新YOLOX算法背后的主要思想
在本文中,将回顾 YOLO 系列的新型高性能探测器 YOLOX,并进行了一些改进。YOLOX算法背后的主要思想1_YOLO是什么?什么是锚盒、锚框?2_YOLOX2.1_介绍、基线、数据增强什么是数据增强?2.2_解耦头2.3_无锚2.3_多正2.4_SimOTA2.5_端到端的YOLO什么是端到端学习?2.6_其他骨干2.7_结论YOLOX 支持以下部署参考文献1_YOLO是什么?首先,先简单说明一下YOLO算法的基本逻辑。You only look once (YOLO) 是一个实时对象检测系统。原创 2021-08-14 12:42:20 · 841 阅读 · 0 评论 -
PyTorch目标检测基础<02>:SSD检测模型简要介绍与实现
目录1、SSD目标检测算法1.0、简单介绍SSD1.1、SSD网络结构1.2、网络的损失函数、位置损失函数、类别损失函数1.3、存在的问题2、开始测试、训练、推理2.0、获取预训练模型2.1、文件结构配置文件2.2、测试demo2.3、开始训练参考文献:附件:文件结构1、SSD目标检测算法论文:https://arxiv.org/pdf/1512.02325.pdf代码:自行git clone,本文使用lufficc/...原创 2021-08-14 11:39:39 · 361 阅读 · 0 评论 -
PyTorch目标检测基础<01>:torch基础知识与tensor数据类型
上一篇文章链接:PyTorch目标检测基础入门篇为了后续方面参考,这里提供20种以上的优化器链接,内容包括优化器的介绍、发表论文和实现的源码:https://pytorch-optimizer.readthedocs.io/en/latest/本文简要说明:。。。本文主要目的:。。。敬请期待。。。参考文献:。。。。...原创 2021-07-06 00:24:15 · 307 阅读 · 0 评论 -
PyTorch目标检测基础入门篇
0.快速入门1.张量2.数据集和数据加载器3.变换4.建立模型5.自动分化6.优化循环7.保存、加载和使用模型原创 2021-07-02 14:59:45 · 768 阅读 · 0 评论 -
论文《Focal Loss for Dense Object Detection》Detectron2的安装与测试(测试案例:全景分割、姿态估计、实例分割、目标检测 - Faster R-CNN)
基于论文《Focal Loss for Dense Object Detection》提出的解了样本不平衡的问题,这里简单实现Detectron2的安装与测试。原始代码为https://github.com/facebookresearch/detectron,但是后来统一了Detectron2https://github.com/facebookresearch/detectron2。关于该论文的源码也可参考:https://github.com/yhenon/pytorch-retinanet,源码解析原创 2021-06-06 23:15:27 · 1658 阅读 · 3 评论 -
2021年完美安装配置YOLO教程:成功在Windows10下安装YOLO开发环境并成功完成目标检测测试「基于C/C++版本」
一、先展示安装成功后YOLO测试成功的结果本文参考链接以及资料下载网址:YOLOYOLOv3_datacuDNN ArchiveCV_GITVS 2019CUDNNOPENCV34最后出现报错:vs2015出现MSB8020,MSB8036等SDK版本选择的错误解决办法:这类问题的解决方案是 在菜单栏中打开项目,在点击重新解决方案目标,然后会弹出SDK选择版本,选择对应的SDK版本,点击确定即可。参考文献:报错解决小技巧经过这个报错后成功安装:测试结果:终端输入下面的命令:原创 2020-11-14 22:07:08 · 2606 阅读 · 0 评论