
机器学习与AI模型
文章平均质量分 58
机器学习与AI模型
源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
干货:机器学习之线性代码基础
资料地址:https://machine-learning-from-scratch.rea原创 2023-11-29 20:37:00 · 133 阅读 · 0 评论 -
自动驾驶场景表示向量化方法VAD: Vectorized Scene Representation for Efficient Autonomous Driving
这篇论文提出了一种名为VAD的自动驾驶场景表示向量化方法,旨在提高自动驾驶系统的规划性能和推理速度。另一方面,VAD比以往的端到端规划方法运行速度更快,通过摆脱计算密集的栅格化表示和手动设计的后处理步骤。VAD的模型使用了ResNet50作为骨干网络,通过将点云数据转换为BEV图像,使用Transformer进行特征提取和规划。该项目基于mmdet3d、detr3d、BEVFormer和MapTR等项目,使用了向量化场景表示和简洁的模型设计,实现了SOTA的端到端规划性能,并大幅度提高了推理速度。原创 2023-11-13 21:38:29 · 2310 阅读 · 0 评论 -
【在线机器学习】River对流数据进行机器学习
River是一个用于在线机器学习的Python库。它旨在成为对流数据进行机器学习的最用户友好的库。River是和s合并的结果。举个简单示例,将训练逻辑回归来对网站网络钓鱼数据集进行分类。下面介绍了数据集中的第一个观测值。现在,让我们以流式处理方式在数据集上运行模型。我们按顺序交错预测和模型更新。同时,我们更新性能指标以查看模型的表现如何。当然,这只是一个人为的例子。我们欢迎您查看文档的介绍部分以获取更全面的教程。原创 2023-09-20 22:49:37 · 1242 阅读 · 0 评论 -
机器学习:在线学习和离线学习区别
机器学习中的在线学习(Online Learning)和离线学习(Offline Learning)是两种不同的学习方式,它们在数据处理和模型更新方面有着明显的区别。以下是它们的主要区别:使用了SGDClassifier作为在线学习模型,模拟了一个不断更新的数据流,然后根据每个新的样本更新模型。输出:在下面示例代码中,在在线学习的示例之后提供的在线学习示例,变量 X 和 y 不再处于作用域内。原创 2023-09-18 22:06:46 · 4918 阅读 · 1 评论 -
Gradio:演示机器学习模型结果的最快方法
Gradio是一个功能强大且易于使用的库,适用于各种机器学习和数据处理应用的快速部署。它使得将模型转化为实际应用变得非常简单,同时为用户提供了直观、友好的交互式体验。Gradio的目标是帮助数据科学家、机器学习工程师和开发人员轻松地将机器学习模型和其他应用部署为用户友好的交互式界面。Gradio提供了一组简单易用的API,让您能够快速地将模型和数据处理功能与用户界面结合起来。通过Gradio,您可以在几行代码中创建一个交互式应用,用户可以直接在浏览器中与您的模型进行交互。原创 2023-07-25 15:37:24 · 515 阅读 · 0 评论 -
机器学习使用记录(A-1):
马上开始,敬请期待…参考文献:https://www.jianshu.com/p/eff2df3984e1原创 2021-10-09 16:37:52 · 151 阅读 · 0 评论