
数据集
文章平均质量分 69
源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
地理空间与交通流量数据集:TaxiNYC、TaxiBJ、BikeDC和BikeNYC
TaxiBJ数据集提供了丰富的时空信息,覆盖了北京市多个时间段的出租车流动情况。通过该数据集,研究人员可以研究城市内的人群流动模式、交通需求的变化规律以及进行交通流量预测。此外,数据集还为城市交通规划和管理提供了重要的支持,能够帮助制定更合理的交通调度方案。原创 2024-10-19 22:40:53 · 3712 阅读 · 0 评论 -
联邦存款保险公司与银行失败和失败银行列表数据集
美国联邦存款保险公司(FDIC)以及通常与银行失败和失败银行列表相关的一些常见信息。美国联邦存款保险公司(FDIC):美国联邦存款保险公司是美国政府机构,成立于1933年。其主要职责是保护美国存款人的存款。FDIC通过监督和保险授权的银行和储蓄机构,以确保在这些机构发生倒闭时,存款人的存款得到保障。银行失败:银行失败是指一个银行或储蓄机构由于财务困难、资产不足或其他问题而无法满足其金融承诺,最终被关闭或接管。当银行失败时,FDIC通常会介入,以确保存款人的存款得到保护,并促使银行的有关事宜得到合理处理。原创 2023-10-26 01:13:14 · 209 阅读 · 0 评论 -
macrodata数据集在Python统计建模和计量经济学中的应用
macrodata.csv是一个示例数据集,通常用于统计分析和计量经济学中的教育和训练目的。这个数据集通常包括以下列:year(年份):表示数据观察的年份。quarter(季度):表示数据观察的季度(通常是1至4)。realgdp(实际国内生产总值):表示实际国内生产总值的数值,通常以美元为单位。realcons(实际消费支出):表示实际消费支出的数值,通常以美元为单位。realinv(实际投资支出):表示实际投资支出的数值,通常以美元为单位。原创 2023-10-23 09:09:37 · 903 阅读 · 0 评论 -
自然图像中的字符识别:Chars74K 数据集
为 拉丁字母,这在很大程度上被认为是一个已解决的问题 受限情况,例如扫描文档的图像 包含常用字符字体和统一 背景。但是,使用流行的相机获得的图像和 手持设备仍然对 字符识别。卡纳达语的复合符号是 被视为单个类,这意味着 辅音和元音导致我们数据集中的第三类。但是,我们决定将此表示形式用于 我们的基线评估出现在[deCampos等人]中,作为一种方式 以评估此问题的通用识别方法。这总共提供了超过 74K 的图像(这解释了名称 数据集)。在此数据集中,可以使用英语和卡纳达语中使用的符号。原创 2023-06-23 16:49:20 · 974 阅读 · 0 评论 -
CHB-麻省理工学院头皮脑电图数据库
该数据库在波士顿儿童医院收集,包括患有顽固性癫痫发作的儿科受试者的脑电图记录。受试者在停用抗癫痫药物后被监测长达几天,以表征他们的癫痫发作并评估他们手术干预的候选资格。原创 2023-05-22 21:20:53 · 2250 阅读 · 0 评论 -
介绍动态手势识别数据集DHG-14/28
动态手势 14/28 数据集包含以两种方式执行的 14 个手势序列:使用一根手指和整只手。每个手势由 5 名参与者以 20 种方式执行 2 次 - 如上所述 - 产生 2800 个序列。所有参与者都是右撇子。序列的每一帧都包含一个深度图像,即22D深度图像空间和2D世界空间中3个关节的坐标,形成一个完整的手骨架。深度图像和手骨架以每秒30帧的速度捕获,深度图像的分辨率为640x480。下载数据集:http://www-rech.telecom-lille.fr/DHGdataset/#gestures。原创 2023-05-13 00:23:46 · 1903 阅读 · 9 评论 -
介绍动作识别数据集:“NTU RGB+D”数据集和“NTU RGB+D 120”数据集
动作识别数据集:“NTU RGB+D”数据集和“NTU RGB+D 120”数据集(还包括AUTH UAV手势数据集:NTU 4级)本页介绍两个数据集:“NTU RGB+D”和“NTU RGB+D 120”。“NTU RGB+D”包含60个动作类和56,880个视频样本。“NTU RGB+D 120”扩展了“NTU RGB+D”,增加了另外60个类和另外57,600个视频样本,即“NTU RGB+D 120”总共有120个类和114,480个样本。原创 2023-05-13 00:13:23 · 5377 阅读 · 0 评论 -
Object s 365目标检测 数据集
目标检测是计算机视觉和模式识别领域的基础问题之一,对计算机视觉和模式识别领域具有重要的应用价值。| 数据集描述北京智源人工智能研究院 和旷视 联合推出了目标检测任务的新基准: Objects365。它的所有图像数据都是在自然场景设计和收集的。该Objects365目标检测数据集主要用于解决具有365个对象类别的大规模检测,并 为目标检测研究提供多样化、实用性的基准。同时,我们围绕数据集组织了2019年智源-旷视目标检测挑战赛,以及2020年智源-旷视目标检测赛 希望这些活动可以成为一个平台,推动目标检测转载 2021-08-25 10:18:32 · 2165 阅读 · 0 评论