
自动驾驶
文章平均质量分 52
源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
自动驾驶场景表示向量化方法VAD: Vectorized Scene Representation for Efficient Autonomous Driving
这篇论文提出了一种名为VAD的自动驾驶场景表示向量化方法,旨在提高自动驾驶系统的规划性能和推理速度。另一方面,VAD比以往的端到端规划方法运行速度更快,通过摆脱计算密集的栅格化表示和手动设计的后处理步骤。VAD的模型使用了ResNet50作为骨干网络,通过将点云数据转换为BEV图像,使用Transformer进行特征提取和规划。该项目基于mmdet3d、detr3d、BEVFormer和MapTR等项目,使用了向量化场景表示和简洁的模型设计,实现了SOTA的端到端规划性能,并大幅度提高了推理速度。原创 2023-11-13 21:38:29 · 2310 阅读 · 0 评论 -
详解数据集safety-pilot-model-deployment-data
safety-pilot-model-deployment-data这个数据集是由美国交通部的联邦航空管理局(FAA)和交通运输部(DOT)主导的“安全试点”(Safety Pilot Model Deployment)项目所提供的。该项目旨在研究汽车与飞机之间的通信技术,并评估这些技术对道路交通安全的影响。数据集包含了从2011年8月至2012年9月期间,来自3,000辆通信能力车辆的车载传感器数据,以及来自20个基础设施探测器的数据。原创 2023-05-06 22:49:31 · 1476 阅读 · 2 评论 -
自动驾驶:使用 3D 时空卷积网络的自监督点云预测
参考文献:B. Mersch, X. Chen, J. Behley, and C. Stachniss, “Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks,” in Proc. of the Conf. on Robot Learning (CoRL), 2021大多数自动驾驶汽车使用 3D 激光扫描仪,即所谓的 LiDAR,来感知周围的 3D 世界。LiDAR 生成汽车周围场原创 2022-01-01 14:31:34 · 1229 阅读 · 0 评论 -
自动驾驶carla模拟器坐标系转换为icv坐标系[完整版源码]
欢迎点赞转发、一起交流学习#!/usr/bin/env python## Copyright (c) 2018-2019 Intel Corporation## This work is licensed under the terms of the MIT license.# For a copy, see <https://opensource.org/licenses/MIT>.#"""Tool functions to convert transforms from原创 2021-01-13 18:08:45 · 666 阅读 · 0 评论 -
激光雷达扫描频率、角分辨率、帧率与采样率的计算方法
激光雷达输出的图像也被称为“点云”图像,相邻两个点之间的夹角就是角分辨率。一幅点云图像代表一帧,对应到激光雷达内部就是电机旋转一圈完成扫描。帧率即代表一秒钟内激光雷达电机旋转的圈数,也就是每秒钟完成一圈扫描的次数。由于激光雷达的采样率是一定的,因此帧率越高,角分辨率越低;帧率越低,角分辨率越高。采样率表示激光雷达每秒钟进行有效采集的次数,可直观理解为一秒内产生的点云数目。采样率可以通过角分辨率和帧率计算:角分辨率0.08°时,每一帧的点云数目:360°/0.08°= 4500;每秒10帧,则每秒.原创 2021-01-13 16:17:01 · 29264 阅读 · 8 评论 -
为自动驾驶carla配置车流量
设定流量模拟交通是使地图栩栩如生的最佳方法之一。还需要为城市环境检索数据。在CARLA中有不同的选择。卡拉交通和行人CARLA流量由流量管理器模块管理。至于行人,每个人都有自己的carla.WalkerAIController。打开一个新终端,然后运行spawn_npc.py生成车辆和步行者。让我们仅生成50辆汽车和相同数量的助行器。cd /opt/carla/PythonAPI/examplespython3 spawn_npc.py -n 50 -w 50 --safespawn_npc转载 2021-01-13 11:07:49 · 1268 阅读 · 0 评论 -
OpenDRIVE:学习文档
官网链接:https://www.asam.net/standards/detail/opendrive/下载与安装链接:https://gitlab.lrz.de/tum-cps/opendrive2lanelet参考学习文档链接:https://www.asam.net/index.php?eID=dumpFile&t=f&f=3907&token=fffa694711f0cd3cc37e61f38587b3a308e9a720...原创 2021-01-10 00:07:19 · 2156 阅读 · 0 评论 -
「自制地图实现carla交通流」sumo与carla百米同步实现交通流仿真
B站视频链接:https://www.bilibili.com/video/BV1Bh41127vu原创 2021-01-09 19:22:49 · 1982 阅读 · 1 评论 -
sumo使用 Unity3D仿真渲染车辆模型及场景「论文」
https://www.jku.at/fileadmin/gruppen/344/Publications/Vehicle-Pedestrians_Interaction_SUMO.pdfhttps://sumo.dlr.de/docs/index.html原创 2021-01-06 19:16:38 · 2611 阅读 · 0 评论 -
车辆动力学模型论文推荐
链接:https://gitlab.lrz.de/tum-cps/commonroad-vehicle-models/blob/master/vehicleModels_commonRoad.pdfhttps://commonroad.in.tum.de/models_cost_functions原创 2021-01-06 13:43:57 · 932 阅读 · 0 评论 -
完美解析Opendrive地图格式数据
总之,对于一个road来说,先确定reference line,有了reference line的几何形状和位置,然后再确定reference line左右的车道lane,车道lane又有实线和虚线等属性;road 和road之间通过普通连接和Junction进行连接,同时还要将road中的相关车道进行连接。原创 2020-12-30 11:33:38 · 7883 阅读 · 1 评论 -
Carla使用OpenStretMap自动生成地图与制作用于插件的全新存储库
OpenStreetMap integrationWarning! This feature is still in experimental phase.OpenStreetMap is an open license map of the world developed by contributors. Sections of these map can be exported to an XML file in .osm format. CARLA can convert this file t原创 2020-12-30 11:07:54 · 1928 阅读 · 0 评论 -
适用于Linux用户:PTV VISSIM KERNEL
https://company.ptvgroup.com/zh/ptv-vissim-kernel原创 2020-12-30 10:43:49 · 470 阅读 · 0 评论 -
创建与carla同步的sumo的联网方法
原创 2020-12-30 09:36:00 · 1147 阅读 · 0 评论 -
完美解决ubuntu18.04启动CARLA后的问题:~/carla$ ./CarlaUE4.sh
安装CARLA后遇到的问题 :~/carla$ ./CarlaUE4.sh参考文献:https://blog.techbridge.cc/2020/09/27/carla-intro/启动命令更换为:./CarlaUE4.sh -opengl -carla-port=2000 4.22.3-0+++UE4+Release-4.22 517 0我的carla版本为:0.9.10测试一下,运行测试成功:参考文献:https://blog.csdn.net/DoHer/article/det原创 2020-12-26 17:25:12 · 2606 阅读 · 0 评论 -
ubuntu18.04安装eclipse-sumo与使用
要能够在Linux上运行SUMO,只需执行以下步骤:安装所有必需的工具和库获取源代码构建SUMO二进制文件对于ubuntu,这归结为 sudo apt-get install cmake python g++ libxerces-c-dev libfox-1.6-dev libgdal-dev libproj-dev libgl2ps-dev git clone --recursive https://github.com/eclipse/sumo export SUMO_HOME="$P原创 2020-12-26 02:04:31 · 493 阅读 · 0 评论 -
精选完整SUMO图形网络仿真教程
netedit是SUMO的图形网络编辑器。**目的:**创建和修改SUMO网络**系统:**便携式(已测试Linux / Windows);打开一个窗口**输入(可选):**导入的路网定义**输出:**生成的SUMO道路网络;可选地还有其他输出编程语言: c ++使用说明netedit是一个可视化网络编辑器。它可用于从头开始创建网络以及修改现有网络的所有方面。具有强大的选择和突出显示界面,它也可以用于调试网络属性。netedit 建立在netconvert之上。根据一般原创 2020-12-25 14:04:45 · 1932 阅读 · 0 评论 -
完美解析车头时距THW与碰撞时间TTC的区别
简要说明引用文献“车距检测预警”技术同样是检测本车与前车的车距(HEADWAY),在车距过近的情况下向驾驶员发出警报。因为车距Headway一般会换算成时间显示出来,所以容易与FCW的碰撞时间混淆,但是车距监测警告 (HMW)的车距时间和FCW的碰撞时间(TTC)计算方式是不同的:计算公式Headway车距时间 = 两车车距 / 本车的车速FCW的碰撞时间(TTC)= 两车车距 / 两车的相对车速案例分析:当前后两车的距离为20米,前车的车速为60Km/h,后车的车速为80Km/h,转载 2020-09-14 15:54:12 · 19098 阅读 · 7 评论 -
Matlab使用笔记(七):将PreScan连接MATLAB实现仿真 (附录:自动无人驾驶仿真软件PreScan的应用介绍)
具体介绍:1、双击打开PreScan和MATLAB2、新建模拟文件【File】->【New Experiment】新建实验3、搭建模拟场景如交通路段、障碍物、车道等,这里可选择草地场景,将【Grass】拖入网格区域,其他也类似。选择交通基础设施(各种形状的道路)右图会显示你当前搭建的环境中的信息单击车道右键【Object configuration】,在单击车道线,可以设置车道线的属性后续插入的道路,可以【copy style】原来道路的设置,再【paste st转载 2020-09-13 19:02:11 · 12430 阅读 · 12 评论 -
Matlab使用笔记(九):matlab实现交通流仿真/车感知/城市交通交叉路口
点击进入原创 2020-08-25 14:19:47 · 13979 阅读 · 4 评论