
TensorFlow
文章平均质量分 62
源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
RTX30系列linux+docker容器的GPU配置(tensorflow-gpu==1.15~2.x、tensorrt 7、cuda、cudnn)附加resnet50模型测试
当然还有其他很多的方法,也不止这一种,只是觉得这里的tensorflow1.15gpu安装的方式是直接给你封装一起安装了(包含cudnn,cuda),如果觉得想了解环境的配置细致,可以先创建conda+python3.6,再安装对应的cuda、cudnn版本就可以了,这里只是记录以下,希望能帮助到大家。在保证宿主机安装好nvidia驱动的前提下,创建docker容器导入nvidia环境案例conda先装cuda=11.3.1,cudnn=8.2.1,再装tensorflow-gpu=2.6.5。......原创 2022-07-26 22:42:52 · 4298 阅读 · 0 评论 -
TensorFlow Lite 示例应用
参考连接:https://www.tensorflow.org/lite/examples转载 2022-04-25 10:47:42 · 666 阅读 · 0 评论 -
完美解决TensorFlow-gpu报错问题Could not load dynamic library ‘libnvinfer.so.6’ and ‘libcudart.so.11.0’
一、问题描述Could not load dynamic library ‘libnvinfer.so.6’; dlerror:libnvinfer.so.6: cannot open shared object file: No such file ordirectory; LD_LIBRARY_PATH: :/usr/local/cuda-10.1/lib64报错后仍可以正常运行,但是发现GPU并未调用,只跑在CPU上。在尝试多次重装CUDA10.1、CUDA ToolKit等后,均无效。原创 2021-09-10 10:13:11 · 14861 阅读 · 1 评论 -
Ubuntu16.04配置miniconda3国内镜像源
1.终端输入conda config --set show_channel_urls yes目的是为了生成 .condarc配置文件。2.修改配置文件打开配置文件sudo gedit .condarc把下列配置信息copy进 .condarc文件保存即可。channels:- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pk原创 2021-09-10 09:37:41 · 1373 阅读 · 0 评论 -
TensorFlow使用GPU加速模型
指定GPUimport os#os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"os.environ["CUDA_VISIBLE_DEVICES"] = "0"#备注:不同的NVIDIA-cuda-gpub编号可能不同,如果不是0请自行查看自己的机器gpu编号。设置定量的GPU使用量config = tf.ConfigProto()config.gpu_options.per_process_gpu_memory_fraction = 0.9 #原创 2021-04-09 14:17:20 · 676 阅读 · 0 评论 -
完美解决tensorflow-gpu2.4没有multi_gpu_model的问题
常见问题Keras报错:无法从keras.utils导入multi_gpu_modelImportError: cannot import name ‘multi_gpu_model’报错原因:更高版本的tf2.4目前对于keras未兼容所以功能模块,没有multi_gpu_model功能函数。解决方法:将tf2.2环境下生成的…/lib/python3.6/site-packages/tensorflow/python/keras/utils/multi_gpu_utils.py复制到tf2.4同原创 2021-03-28 17:38:43 · 7006 阅读 · 0 评论 -
一行命令查看你的ubuntu环境可以安装的tensorflow、pytorch版本
在已安装nvidia460、cuda11、cudnn8的前提下:查看tensorflow的所有版本anaconda search -t conda tensorflow运行以下命令查看适合自己的版本anaconda show anaconda/tensorflow如过你安装cuda9,适合的版本可能更少。类似地,查看pytorch:...原创 2021-03-28 02:46:58 · 1096 阅读 · 0 评论 -
ubuntu16.04火狐浏览器右键下载视频方法
该方法目前仅在该网页上实现,其他可使用爬虫尝试抓取:直接在搜索框搜索:右键保存视频即可https://sina.cn/index/feed?from=touch&Ver=10原创 2021-03-28 00:02:19 · 1461 阅读 · 0 评论 -
完美解决NVIDIA-3060、3070、3080、3090显卡驱动配置深度学习环境的问题
看图说话:官方已经说的很清楚,这里就不做解释,其他详细说明请查看我的往期博客文章,希望能够帮助到您。解决方法如下:解决方法参考资料:https://blog.csdn.net/weixin_41194129/article/details/113394203RTX3080安装CUDA解决方法:https://github.com/tensorflow/tensorflow/issues/43701参考文献解决方法:https://zhuanlan.zhihu.com/p/291332801原创 2021-03-23 15:47:32 · 12677 阅读 · 1 评论 -
视觉目标检测-02:使用yolov3训练自己的数据集——口罩检测
预测结果展示:文章目录1、建立数据集文件夹:2、开始标注图片3、标签文件与tfrecord文件4、迁移训练1、建立数据集文件夹:其中:Annotations:主要用来存储lab标注后保存的xml数据的目录ImageSets:标签文件,一般是训练集和验证集的名称JPEGImages:主要存储经过重新编写命名后的所有图片jpg文件的目录其中处理txt标签脚本如下:2、开始标注图片本次demo只标注了70到80张图片,70张作为训练集,剩下的图片作为验证集。这里就不详细说labelIm原创 2021-03-13 23:50:33 · 778 阅读 · 1 评论 -
Dockerfile:Deeplearning_Playland
ARG CUDA_VERSION=11.1FROM nvidia/cuda:${CUDA_VERSION}-cudnn8-devel-ubuntu20.04MAINTAINER "Ammar Yasir Niach email:ammar.naich@gmail.com"ENV DEBIAN_FRONTEND noninteractiveENV NVIDIA_VISIBLE_DEVICES allENV NVIDIA_DRIVER_CAPABILITIES compute,utili.转载 2021-03-03 23:54:51 · 663 阅读 · 1 评论 -
Dockerflie:tf-nightly-gpu-docker-cuda11.1
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.## Licensed under the Apache License, Version 2.0 (the "License");# you may not use this file except in compliance with the License.# You may obtain a copy of the License at## http://ww转载 2021-03-03 23:48:01 · 566 阅读 · 1 评论 -
完美解决稀疏卷积报错spconv/box_iou.h:: boost/geometry.hpp
配置稀疏卷积python setup.py bdist_wheel报错:spconv/include/spconv/box_iou.h:21:10: fatal error: boost/geometry.hpp: No such file or director解决方法,安装libboost配置文件,终端执行如下命令:sudo apt-get install libboost-filesystem-devsudo apt-get install libboost-dev再次配置稀疏卷积:完原创 2021-03-01 00:11:13 · 3051 阅读 · 7 评论 -
PyTorch1.8-gpu和TensorFlow-gpu-2.5已发布【附下载地址和安装教程】
TensorFlow-gpu 2.5已发布,但官方网页还没有通知。该版本已由google开发人员Mihai Maruseac发布在pypi网站不过已经上线,查看地址链接:地址一:https://libraries.io/pypi/tf-nightly-gpu地址二:https://pypi.org/project/tf-nightly-cpu/参考文献:https://pip.pypa.io/en/stable/reference/pip_install/#hash-checking-mo原创 2021-02-28 19:54:58 · 5665 阅读 · 1 评论 -
Tensorflow2.x图像分类:案例——CIFAR数据集
CIFAR10 数据集由加拿大 Canadian Institute For Advanced Research 发布,它包含了飞机、汽车、鸟、猫等共 10 大类物体的彩色图片,每个种类收集了 6000 张32 × 32大小图片,共 6 万张图片。其中 5 万张作为训练数据集,1 万张作为测试数据集。每个种类样片如图 所示。关于数据集的解析可参考官网:(也可直接下载,数据集没多大,很快就下完)https://www.cs.toronto.edu/~kriz/cifar.html在 TensorF原创 2021-01-26 23:18:16 · 495 阅读 · 0 评论 -
两行命令过滤掉tensorflow开头打印的所有红色警告
前提:你已经完全配置好了TF2.x环境的情况下,出现如下警告:解决办法:在代码开头加上:import osos.environ["CUDA_VISIBLE_DEVICES"]="0"# os.environ["TF_CPP_MIN_LOG_LEVEL"]='1' # 这是默认的显示等级,显示所有信息os.environ["TF_CPP_MIN_LOG_LEVEL"]='2' # 只显示 warning 和 Error# os.environ["TF_CPP_MIN_LOG_LEVEL"]=原创 2021-01-26 13:42:09 · 2234 阅读 · 2 评论 -
使用TF2.x-GPU中的Tensorboard工具进行可视化训练分析:书写字体源码实现
TensorBoard是一套用于检查和理解TensorFlow运行和图形的Web应用程序,这也是Google的TensorFlow比Facebook的Pytorch最大的优势之一。终端运行:tensorboard --logdir="path/to/logs原创 2021-01-25 13:33:20 · 435 阅读 · 0 评论 -
图像处理技术:keras-yolov3
解决AttributeError: ‘str’ object has no attribute ‘decode’一、先展示解决方法打开hdf5_format.py文件,将decode全部修改成encode即可。再次运行yolo v3模型:python convert.py yolov3.cfg yolov3.weights model_data/yolo.h5python yolo_video.py --input test.mp4测试成功:二、分析报错原因根据问题提示,意思是,属性错原创 2021-01-24 12:08:04 · 315 阅读 · 0 评论 -
目标检测之 “预测的边框” 和 “真实的边框”
IoU 的全称为交并比(Intersection over Union),通过这个名称我们大概可以猜到 IoU 的计算方法。IoU 计算的是 “预测的边框” 和 “真实的边框” 的交集和并集的比值。开始计算之前,我们首先进行分析下交集和并集到底应该怎么计算:我们首先需要计算交集,然后并集通过两个边框的面积的和减去交集部分即为并集,因此 IoU 的计算的难点在于交集的计算。为了计算交集,你脑子里首先想到的方法应该是:考虑两个边框的相对位置,然后按照相对位置(左上,左下,右上,右下,包含,互不相交)分情况转载 2021-01-19 11:07:35 · 2360 阅读 · 0 评论 -
简单理解Tensorflow2.x基础(一)
一、简单数学计算import tensorflow as tfimport osos.environ["CUDA_VISIBLE_DEVICES"]="0"tf.compat.v1.disable_eager_execution()a=tf.constant(2)b=tf.constant(3)with tf.compat.v1.Session() as sess: print("a:%i" % sess.run(a),"b:%i" % sess.run(b)) print("原创 2021-01-17 18:43:16 · 293 阅读 · 0 评论 -
神经网络常用连接层super().__init__()方法
super().init(),就是继承父类的init方法,同样可以使用super()点 其他方法名,去继承其他方法。# 最底层:先写一个父类Aclass A: def __init__(self): print('A')# 第二层:让 B、C、D 继承自Aclass B(A): def __init__(self): print('B') super().__init__()class C(A): def __init__原创 2021-01-17 18:20:25 · 1183 阅读 · 0 评论 -
2021年最新完整统计TensorFlow2.x报错记录与解决方法「希望能帮助到你」
报错1:module ‘tensorflow’ has no attribute ‘set_random_seed’原因:在tensorflow 2.x中应该是: tf.random.set_seed报错2:module ‘tensorflow’ has no attribute ‘GPUOptions’修改为:tf.compat.v1.报错3:RuntimeError: set_session is not available when using TensorFlow 2.0.修改为:tf..原创 2021-01-17 15:02:49 · 4460 阅读 · 5 评论 -
一幅图说明tensorflow欠拟合与过拟合
参考文献:https://www.cnblogs.com/xxmmqg/p/13257474.html原创 2021-01-17 00:17:42 · 327 阅读 · 0 评论 -
使用TensorFlow构建面部口罩识别系统【本文源码开箱即用】
TensorFlow和OpenCV库的复杂性使得创建自动化解决方案成为可能,从而不仅可以最大程度地提高效率和确保合规性,而且还可以挽救生命。TensorFlow官网本文原创github作者:marshall wurangian本文技术翻译CSDN博客作者:源代码杀手微信公众号:关注本公众号可获取本文其他数据库源码我们看到计算机视觉 图像识别技术在我们日常生活中的应用非常频繁。无论是通过面部识别来解锁iPhone,通过机场检查,甚至是通过收费架来捕获您通过的汽车图像,图像分类都可以使机器有效地原创 2021-01-09 14:34:40 · 1648 阅读 · 0 评论 -
ubuntu18.04完美解决tensorflow-gpu2.0报错问题:ImportError: libcudart.so.10.0和_np_quint8 = np.dtype
出现如下问题是由于numpy版本太高造成的,适当降低或重新安装其他版本即可。np_qint8 = np.dtype([(“qint8”, np.int8, (1,))])_np_quint8 = np.dtype([(“quint8”, np.uint8, (1,))])_np_qint16 = np.dtype([(“qint16”, np.int16, (1,))])_np_quint16 = np.dtype([(“quint16”, np.uint16, (1,))])_np_qint.原创 2020-12-26 01:31:32 · 491 阅读 · 0 评论 -
开发报错记录解决(二):ModuleNotFoundError: No module named ‘keras.backend.tensorflow_backend‘; ‘keras.backend‘
出现以下原因多半是tensorflow与keras版本不匹配:ModuleNotFoundError: No module named ‘keras.backend.tensorflow_backend’; ‘keras.backend’解决办法:参考网站:https://docs.floydhub.com/guides/environments/找到自己的Tensorflow版本对应的keras版本即可,然后重新安装命令:注意:别忘了卸载以前安装的版本pip uninstall keras原创 2020-12-01 14:28:30 · 15132 阅读 · 9 评论 -
目标检测入门开篇:YOLOv3快速训练高速路段车辆数据
微信公众号文章:目标检测入门开篇:YOLOv3快速训练高速路段车辆数据原创 2020-11-15 18:11:09 · 497 阅读 · 0 评论 -
汇总TensorFLow2.0运算法则
一、Tensor 之间的运算法则1) 相同大小 Tensor 之间的任何算术运算都会将运算应用到元素级2) 不同大小 Tensor(要求dimension 0 必须相同) 之间的运算叫做广播(broadcasting)3) Tensor 与 Scalar(0维 tensor) 间的算术运算会将那个标量值传播到各个元素4) Note:TensorFLow 在进行数学运算时,一定要求各个 Tensor 数据类型一致二、算术操作(+,-,*,/,Mod)(1)tensor-tensor操作(e转载 2020-11-02 23:30:38 · 1171 阅读 · 0 评论 -
赶快收藏:快速安装PyTorch和TensorFlow(gpu+cpu+1.7.1+2.2.0--cuda_11.0.2_450.51.05)命令
PyTorch豆瓣源: pip install torch===1.4.0 torchvision===0.5.0 -f https://download.pytorch.org/whl/torch_stable.html -i https://pypi.douban.com/simple some-package清华源:pip install torch===1.4.0 torchvision===0.5.0 -f https://download.pytorch.org/whl/torch_s原创 2020-11-01 15:44:26 · 1704 阅读 · 0 评论 -
最全tensorflow,PyTorch ,numpy和keras 版本匹配汇总
Framework Env name (--env parameter) Description Docker Image Packages and Nvidia SettingsTensorFlow 2.2 tensorflow-2.2 TensorFlow 2.2.0 + Keras 2.3.1 on Python 3.7. floydhub/tensorflow TensorFlow-2.2TensorFlow 2.1 tensorflow-2.1 TensorFlow 2.1.0 + Kera.原创 2020-08-06 16:34:27 · 23569 阅读 · 8 评论 -
完美解决查看自己使用的tensorflow是cpu还是gpu版本
from tensorflow.python.client import device_libprint(device_lib.list_local_devices()原创 2020-08-03 14:42:32 · 15315 阅读 · 0 评论 -
完美更新安装TensorFlow-gpu
方法一:正常更新安装查看版本import tensorflow as tftf.__version__查询tensorflow安装路径为:tf.__path__升级pip install --upgrade tensorflow-gpu升级到固定版本pip install tensorflow-gpu==1.7.0方法二:下载whl文件清华镜像源gpu用迅雷下载要快很多哈之后再指定环境下安装即可:先进入gpu虚拟环境,再cd到whl文件所在文件目录进行安装,其中:虚拟原创 2020-07-22 10:39:47 · 2673 阅读 · 0 评论 -
【移动式完美包安装】不再重复安装tensorflow和pytorch的方法:实现携带自己已经创建好的pytorch和tensorflow编译环境包到别的电脑上去
我写这篇文章的目的就是为了那些怎么装都装不上tensorflow和torch而准备的。如何实现携带自己已经创建好的pytorch和tensorflow编译环境包到别的电脑上去?首先我们来看看新创建的虚拟环境,该编译环境下没有tensorflow和torch,下面的操作步骤中无需重装这两个包,只需将另一台计算机上已配置好的包lib所有内容拷贝备份即可。标题第一步:查询要携带的tensorflow和pytorch包的位置找到对应的编译环境标题第二步:查询版本和路径将tf和torch存在的文件包找原创 2020-07-22 00:52:29 · 1050 阅读 · 0 评论 -
完美解决“You will need to adjust your conda configuration to proceed....”的问题
出现以下的原因就是你当前设定的镜像源已经不支持该包了,所以需要重新设定PS C:\Users\cc> conda create -n tensorflow python=3.7.4Collecting package metadata (current_repodata.json): ...working... failedconda : 所在位置 行:1 字符: 1+ conda create -n tensorflow python=3.7.4+ ~~~~~~~~~~~~~~~~~~~原创 2020-07-22 00:12:54 · 26657 阅读 · 12 评论 -
完美解决Anaconda3在win10开始菜单找不到Anaconda3 command prompt入口的问题
一行代码上青天,轻松搞定conda update menuinstconda install -f console_shortcut ipython ipython-notebook ipython-qtconsole launcher spyderconda update menuinstconda install -f console_shortcut ipython ipython-notebook ipython-qtconsole launcher spyder...原创 2020-07-21 18:02:15 · 1605 阅读 · 5 评论 -
完美解决Windows10安装和运行TensorFlow编译环境时出现“cudart64_100.dll、cublas64_10.dll、cudnn64_7.dll...”报错的问题
安装或者运行TensorFlow时出现如下情况说明缺少相关驱动和依赖dll解决办法:要么更新NVIVDIA驱动,要么重新安装驱动要安装TensorFlow请下载10.0版本下载链接点这里2020-07-21 08:58:42.494717: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library cudart64_101.dll2020-07-21 08原创 2020-07-21 09:11:54 · 11604 阅读 · 12 评论 -
如何成功在没有nvidia驱动的win10电脑里安装CUDA和pytorch-gpu
先查看本机是否有nvidia驱动:显然没有,那就去官网下载:www.nvidia.cn原创 2020-07-20 23:30:06 · 27557 阅读 · 34 评论 -
ubuntu20.04在VS code下完美创建jupyter文件的tensorflow环境
本文的操作是在你已经安装和配置好tensorflow(简称tf)的情况下,详细的操作步骤如下:第一步:首先准备好带测试的代码import tensorflow as tfif __name__=='__main__': g = tf.Graph() # add ops to the user created graph with g.as_default(): hello = tf.constant('Hello Tensorflow')原创 2020-07-19 12:03:24 · 442 阅读 · 0 评论 -
ubuntu2020完美安装tensorflow
假设你已经安装anaconda3和pip的情况下创建环境:conda create -n tensorflow python=3.激活:source activate tensorflow国外的镜像太慢,后来选择了豆瓣进入环境后开始安装tensorflow使用豆瓣镜像源:pip install --index-url https://pypi.douban.com/simple tensorflowLooking in indexes: https://pypi.douban.com/原创 2020-07-18 18:43:45 · 485 阅读 · 0 评论 -
完美快速安装tensorflow
快速安装方法:用pip安装tensorflow换成国内源快速安装清华镜像源pip install --index-url https://pypi.douban.com/simple tensorflow阿里镜像源pip install --index-url http://mirrors.aliyun.com/pypi/simple/ tensorflow原创 2020-07-15 00:13:53 · 558 阅读 · 0 评论