
人工智能
文章平均质量分 57
源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
【爆火毕业设计项目经验分享】多模态情感分析项目选题、毕业设计选题、项目案例定制
本课题旨在设计并实现一个基于Transformer架构的多模态情感分析系统,通过文本、语音和视频数据的融合,精准预测情感标签。研究内容包括数据预处理、特征提取、多模态数据对齐与融合、模型训练与优化,并通过实验验证模型性能。原创 2025-03-26 03:22:37 · 729 阅读 · 0 评论 -
【深度学习驱动流体力学】DeepONet求解三维瞬态固体力学的实现方法与完整代码实验结果展示
下面的实验结果参考结构为:引用自Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators。原创 2025-03-19 09:21:48 · 309 阅读 · 0 评论 -
DeepSeek全栈技术体系解密:从算法源码到企业级智能体开发实战
在AGI技术加速演进的时代背景下,DeepSeek作为行业级大模型的代表,正在重塑智能系统的开发范式。本课程体系首次系统性披露DeepSeek技术栈的完整实现细节,涵盖从底层算法创新、工程架构设计到企业级落地的全链条知识体系。原创 2025-02-20 01:47:54 · 1449 阅读 · 0 评论 -
【新方法】通过清华镜像源加速 PyTorch GPU 2.5安装及 CUDA 版本选择指南
设置镜像源通过命令,将pip默认的包源更改为清华镜像源,能够有效加速包的下载速度,尤其是对于在中国大陆的用户。使用清华镜像源的好处是,它提供了本地化的源,减少了跨境访问的延迟。安装 PyTorch 等库使用命令安装指定版本的 PyTorch 相关库,并通过指定官方源(如 CUDA 11.8 版本的 PyTorch)。通过这种方式,你可以确保安装的是兼容你机器的 CUDA 版本的 PyTorch,从而能够利用 GPU 提升计算性能。原创 2024-12-28 13:11:33 · 9315 阅读 · 7 评论 -
深度学习GPU显卡4060ti与4060有什么区别?又与游戏显卡有什么区别?
可以看到,4060 Ti相比4060具有更高的性能,适合做深度学习任务,而4060则适合一些入门级的深度学习应用。而深度学习GPU与游戏显卡的主要区别在于优化的计算目标和硬件配置,深度学习GPU专注于高效处理深度学习计算,具有更多的显存和更强的并行计算能力。原创 2024-12-06 14:48:56 · 7716 阅读 · 0 评论 -
经典文章:卷积神经网络的运作原理
https://brohrer.mcknote.com/zh-Hans/how_machine_learning_works/how_convolutional_neural_networks_work.htmlhttps://aitechtogether.com/article/38900.htmlhttps://www.ruanyifeng.com/blog/2017/07/neural-network.htmlhttp://neuralnetworksanddeeplearning.com/ch原创 2024-04-08 01:07:36 · 311 阅读 · 3 评论 -
DataCamp在线学习平台
该平台提供丰富的课程,涵盖了从数据处理到机器学习和深度学习的各个方面。互动学习: DataCamp采用互动式学习方法,通过实时的编程环境,学习者可以直接在浏览器中执行代码,并获得即时反馈。多语言支持: 平台主要支持Python和R语言,为学习者提供了学习两者的机会,适应不同数据科学项目的需求。实际项目: DataCamp的课程通常包含实际项目,帮助学习者在真实场景中应用所学知识,加深理解。速查手册: 提供不同数据工具的速查手册,帮助学习者在实际项目中快速检索并锁定解决方案[1]。原创 2023-11-16 13:06:45 · 2671 阅读 · 0 评论 -
一招解决使用conda安装cudnn较慢问题
配置Conda的镜像源为国内镜像。用国内镜像来加快Conda安装cudnn=7.6.5的速度。Conda将使用国内镜像源来下载和安装cudnn=7.6.5。选择其中一个镜像源进行配置。打开终端或命令提示符。原创 2023-06-01 00:54:03 · 3043 阅读 · 0 评论 -
微软机器学习算法学习资料
微软机器学习算法学习资料:Windows AI使用人工智能的力量变革 Windows 应用程序。Windows AI 为复杂问题提供智能解决方案,使你和你的企业能够实现更高的目标。原创 2023-05-16 15:34:22 · 132 阅读 · 0 评论 -
【发表AI论文模型制图神器】ML-visuals神经网络画图PPT模板
原地址:https://github.com/dair-ai/ml-visuals。原创 2023-04-13 14:24:31 · 460 阅读 · 0 评论 -
AI绘画怎么能画出好图?先理解知识点、流程再开发代码
数据集的选择:AI 绘画的质量和数据集的质量有很大关系。使用高质量的数据集可以帮助 AI 绘画学习更多的绘画技巧和风格,从而创作出更好的图像。训练模型的选择:不同的训练模型对于不同的任务和数据集有不同的表现。选择适合自己的训练模型,可以帮助 AI 绘画更好的图像。数据预处理:对于不同的数据集,需要进行不同的预处理操作,包括图像的大小、颜色空间等等。后期处理:AI 绘画的输出结果可能需要进行后期处理,包括去噪、增强对比度等等。调整参数:训练模型需要进行参数的调整,这些参数包括学习率、迭代次数等等。原创 2023-03-22 22:40:58 · 395 阅读 · 0 评论 -
keras加载过程中keras-applications自动下载的轻量化模型存放路径
实列:在bert4keras框架下加载原创 2022-12-31 13:05:27 · 418 阅读 · 0 评论 -
旧版本NVIDIA驱动下载地址
地址:https://www.nvidia.cn/geforce/drivers/原创 2022-11-09 23:45:33 · 22873 阅读 · 0 评论 -
适用于 AM335X 的处理器 SDK Linux参考文档
参考链接转载 2022-09-24 14:53:10 · 308 阅读 · 0 评论 -
基于ubuntu18.04新版OpenCV+OpenVINO Toolkit构建
选择下载源码版,按照下面的编译方式安装,这里我已经安装了opencv5就不说了,请看之前的文章安装就行。原创 2022-09-21 23:59:58 · 784 阅读 · 0 评论 -
一个实例彻底理解Transformer模型中的BLEU值评价指标
模型预测的句子: the cat sat on the mat标准文章中句子: the cat is on the mat当是BLEU2的情况时,以上句子连续的各个bleu的值如下:对 candidate中的5个词,{the cat,cat sat,sat on,on the,the mat} ,查找是否在reference中,发现有3个词在reference中,所以占比就是0.6其他的也类似,不太理解可以参考文章链接。原创 2022-09-05 11:34:48 · 1372 阅读 · 0 评论 -
Ubuntu安装ffmpeg音视频处理工具:联合解决cuda11+opencv4.6编译bug的问题(cap_ffmpeg_impl/opencv_videoioopencv_cuda*)
FFmpeg 是一个开放源代码的自由软件,可以执行音频和视频多种格式的录影、转换、串流功能,包含了libavcodec——这是一个用于多个项目中音频和视频的解码器库,以及libavformat——一个音频与视频格式转换库。“FFmpeg”这个单词中的“FF”指的是“Fast Forward”。原创 2022-08-23 20:58:32 · 853 阅读 · 0 评论 -
好书推荐:智能交通系统中的计算机视觉和成像
Rodrigo Fernandez、Muhammad Haroon Yousaf、Timothy J. Ellis、Zezhi Chen 和 Sergio A. Velastin。吴文成、Orhan Bulan、Edgar A. Bernal 和 Robert P. Loce。Orhan Bulan、徐蓓蕾、Robert P. Loce 和 Peter Paul。7.1 基于视觉的交叉口分析:容量、延迟和安全 163。11 车道偏离警告系统中的车道检测和跟踪问题 283。...转载 2022-08-17 17:40:17 · 246 阅读 · 0 评论 -
RTX30系列linux+docker容器的GPU配置(tensorflow-gpu==1.15~2.x、tensorrt 7、cuda、cudnn)附加resnet50模型测试
当然还有其他很多的方法,也不止这一种,只是觉得这里的tensorflow1.15gpu安装的方式是直接给你封装一起安装了(包含cudnn,cuda),如果觉得想了解环境的配置细致,可以先创建conda+python3.6,再安装对应的cuda、cudnn版本就可以了,这里只是记录以下,希望能帮助到大家。在保证宿主机安装好nvidia驱动的前提下,创建docker容器导入nvidia环境案例conda先装cuda=11.3.1,cudnn=8.2.1,再装tensorflow-gpu=2.6.5。......原创 2022-07-26 22:42:52 · 4298 阅读 · 0 评论 -
TensorFlow Lite 示例应用
参考连接:https://www.tensorflow.org/lite/examples转载 2022-04-25 10:47:42 · 666 阅读 · 0 评论 -
NVIDIA-CUDA-CUDNN-TENSORRT深度学习编程学习文档
官网文档中心:https://docs.nvidia.com/转载 2022-04-17 14:32:15 · 332 阅读 · 0 评论 -
关于 PyTorch android 在应用程序中的使用示例
https://github.com/pytorch/android-demo-app原创 2022-03-28 19:17:59 · 2944 阅读 · 0 评论 -
AI模型设计:yolov1+darknet+yolov2,3,4,5,X全系列资料汇总[源码仓库]标星收藏
欢迎关注,记得转发点赞评论分享,标星github,谢谢!源码链接:https://github.com/KangChou/Cver4s原创 2022-01-29 10:20:14 · 3845 阅读 · 0 评论 -
SoundTouch音频处理库
一、介绍SoundTouch 是一个开源音频处理库,它允许相互独立地更改声音速度、音高和播放速率参数,即:声音速度可以增加或减少,同时保持原始音高音高可以增加或减少,同时保持原始速度更改同时影响速度和音高的播放速率选择速度/音高/速率的任意组合1.1 联系方式作者电子邮件: oparviai ‘at’ iki.fiSoundTouch WWW 页面:http ????/soundtouch.surina.netSoundTouch git 存储库:https ????/codeberg.o转载 2021-12-31 14:32:04 · 4583 阅读 · 1 评论 -
音乐人声分离[源码教程连接]
音乐音频处理原创 2021-12-29 13:59:01 · 2885 阅读 · 0 评论 -
Bert模型原理
一、Bert Model流程图二、Bert所用Transformer内部结构图三、Masked LM预训练示意图四、Next Sentence Prediction预训练示意图参考:可视化一步步讲用bert进行情感分析:https://blog.csdn.net/jclian91/article/details/104261987...转载 2021-11-18 09:49:19 · 564 阅读 · 0 评论 -
Speech识别论文与zh数据集
Deep Speech 2 : End-to-End Speech Recognition in English and Mandarin论文http://proceedings.mlr.press/v48/amodei16.pdfhttps://blog.csdn.net/w5688414/article/details/77839290https://www.cnblogs.com/yanqiang/p/13371490.htmlctchttps://blog.csdn.net/weixin_原创 2021-11-08 15:51:10 · 266 阅读 · 0 评论 -
在Windows11平台上使用Hyper-V、WSL与虚拟机工具——调用NVIDIA-GPU进行深度学习训练
1、目的是出于在window上安装虚拟机穿透nvidia-gpu进行gpu调用加速。2、英伟达正式启用GPU虚拟机显卡直通功能: 英伟达宣布,完全支持GeForce GPU直通技术,该技术允许虚拟机从主机上访问GPU。原创 2021-09-26 16:52:28 · 11555 阅读 · 1 评论 -
人脸检测FaceNet网络训练自己的数据集
论文:https://arxiv.org/pdf/1503.03832.pdf代码:https://github.com/davidsandberg/facenet训练记录:python src/train_tripletloss.py --logs_base_dir ./logs/facenet/ --models_base_dir ./models/facenet/ --data_dir ./datasets/lfw --model_def models.inception_resnet_v1原创 2021-09-05 19:02:43 · 4065 阅读 · 1 评论 -
Linux下安装百度Paddle
一、环境准备1.1当前飞桨支持的环境Linux 版本(64 位)CentOS 7 (GPU 版本支持 CUDA 10.1/10.2/11.0/11.2)Ubuntu 16.04(GPU版本支持CUDA 10.1/10.2/11.0/11.2)Ubuntu 18.04(GPU版本支持CUDA 10.1/10.2/11.0/11.2)Python 版本 3.6/3.7/3.8/3.9(64 位)pip 或 pip3 版本 20.2.2 或更高版本(64 位)1.2 如何查看您的环境可以使用以下转载 2021-09-04 17:03:00 · 2721 阅读 · 0 评论 -
ubuntu和windows正确安装人脸识别库dlib的方法
一定要先安装cmake、boost 再安装dlib,否则可能不成功。安装命令:pip install cmakepip install boostpip install dlib或选择镜像源提升安装速度:pip install cmake -i http://pypi.douban.com/simple --trusted-host pypi.douban.compip install boost -i http://pypi.douban.com/simple --trusted-host原创 2021-09-04 11:06:18 · 430 阅读 · 0 评论 -
RTX3070、3080和3090区别
rtx3070和3080 3090主要区别是在GPU频率,CUDA数量,单精度,FP16,显存和显存位宽,功耗,价格不一样,详细的区别如下:1、GPU频率的区别:rtx3070的为1.73GHz,rtx3080的为1.71GHz,rtx3090的为1.71GHz;2、CUDA数量的区别:rtx3070的CUDA数量为5888,rtx3080的CUDA数量为8704,rtx3090的CUDA数量为10496;3、单精度的区别:rtx3070的单精度为20.4TFLOPS,rtx3080的单精度为29.8原创 2021-08-25 17:25:08 · 8480 阅读 · 0 评论 -
推荐一个深度学习数据集网站
推荐理由,使用迅雷下载的方式提升了速度:https://hyper.ai/datasets原创 2021-06-29 16:50:03 · 1746 阅读 · 1 评论 -
PyTorch使用 TENSORBOARD 可视化模型、数据和训练
在60 分钟闪电战 中,这里向您展示了如何加载数据,通过我们定义为 子类的nn.Module模型提供数据,在训练数据上训练该模型,并在测试数据上进行测试。为了了解发生了什么,这里在模型训练时打印出一些统计数据,以了解训练是否在进行。但是,我们可以做得更好:PyTorch 与 TensorBoard 集成,后者是一种用于可视化神经网络训练运行结果的工具。本教程使用Fashion-MNIST 数据集说明了它的一些功能,该数据集可以使用torchvision.datasets读入PyTorch。在本教...转载 2021-06-28 14:42:58 · 646 阅读 · 0 评论 -
NVIDIA A100 GPU 上的加速 TensorFlow
基于NVIDIA Ampere GPU架构的NVIDIA A100提供了一系列令人兴奋的新功能:第三代张量核心、多实例 GPU (MIG)和第三代 NVLink 。安培张量核心引入了一种新的用于人工智能训练的数学模式:张量浮点 -32 ( TF32 )。 TF32 旨在加速 FP32 数据类型的处理, FP32 数据类型通常用于 DL 工作负载。在 NVIDIA A100 张量核心上,以 TF32 格式运行的数学运算的吞吐量比上一代 Volta V100 GPU 上运行的 FP32...转载 2021-06-24 10:26:26 · 1749 阅读 · 1 评论 -
NVIDIA深度学习文档教程网站
网址链接:https://docs.nvidia.com/tlt/tlt-user-guide/text/overview.html原创 2021-06-23 23:59:36 · 240 阅读 · 2 评论 -
在KITTI数据集中使用YOLO和Faster R-CNN进行目标检测
在检测 KITTI数据集 采用三种 重新培训 对象探测器: YOLOv2 , YOLOv3 , 快R-CNN 和比较他们的表现进行评估通过上传的结果KITTI评估服务器。注意,有一个以前的员额有关的详细信息YOLOv2 ( click here ). YOLOv3执行情况几乎相同的与YOLOv3,所以,我会跳过一些步骤。 请参考前一章中看到更多细节。准备KITTI数据集我们用 KITTI目2D 培训YOLO和使用 KITTI原始数据 用于测试。 一些测试结果记录的演示视频上面。下载原创 2021-06-23 23:36:40 · 3547 阅读 · 11 评论 -
【经典视觉算法推荐】Focal Loss 论文公式推导及主要贡献
文献参考:https://www.aiuai.cn/aifarm636.html函数绘制参考:https://blog.csdn.net/zengbowengood/article/details/104369125可视化简单解释:原创 2021-06-08 10:52:29 · 2138 阅读 · 4 评论 -
使用TensorRT提高GPU上的YOLOv4对象检测速度
YOLOv4较旧版本YOLOv4的改进,并且我们已经知道现在它比以前更好。也许使用YOLOv3的每个人都将迁移到YOLOv4,因为它是我们可以用于实时应用程序的最快的对象检测模型之一。但是在本教程中,我想向您展示,如何使用TensorRT将对象检测的速度提高三倍!在本教程中,我将不介绍如何安装TensorRT。TensorFlow是当今最受欢迎的深度学习框架之一,在全球拥有成千上万的用户。TensorRT是一个深度学习平台,可通过简单的方式优化神经网络模型并加快GPU推理的性能。TensorFlow团队与原创 2021-05-24 23:53:58 · 1744 阅读 · 0 评论 -
使用云服务器GPU,简单操作流程
注册使用mistgpu,也就大概能使用4小时吧,钱一分没有话,就是领取了赠送的8元。本文不是推广该gpu商家,只是看看windows能不能连上。https://mistgpu.com/user/经过测试是可以连上的,截图如下:GPU测试代码...原创 2021-05-17 02:47:11 · 1417 阅读 · 0 评论