介绍动态手势识别数据集DHG-14/28

动态手势 14/28 数据集包含以两种方式执行的 14 个手势序列:使用一根手指和整只手。 每个手势由 5 名参与者以 20 种方式执行 2 次 - 如上所述 - 产生 2800 个序列。所有参与者都是右撇子。 序列根据其手势、使用的手指数量、表演者和试验进行标记。序列的每一帧都包含一个深度图像,即22D深度图像空间和2D世界空间中3个关节的坐标,形成一个完整的手骨架。 英特尔实感短距离深度摄像头用于收集我们的数据集。深度图像和手骨架以每秒30帧的速度捕获,深度图像的分辨率为640x480。示例手势的长度范围为 20 到 50 帧。

在这里插入图片描述

下载数据集:http://www-rech.telecom-lille.fr/DHGdataset/#gestures

源码参考:https://github.com/kchengiva/Shift-GCN
在这里插入图片描述

### 动态图时空注意力(DG-STA)概述 动态图时空注意力(Dynamic Graph Spatiotemporal Attention, DG-STA)是一种专为基于骨架的手势识别设计的技术。该方法旨在更高效地自动学习手部骨架的结构和动态信息,从而显著提高手势识别任务中的性能[^1]。 #### 主要特点 DG-STA 的核心优势在于其能够捕捉空间和时间维度上的复杂关系。以下是其关键技术点: 1. **动态图构建** DG-STA 利用了动态图的概念来建模骨骼关节之间的拓扑变化。这种方法允许网络自适应调整节点间的连接权重,以更好地反映实际运动过程中的动态特性。 2. **时空位置嵌入** 为了增强模型对节点身份以及时间序列的理解能力,DG-STA 提出了时空位置嵌入机制。这种嵌入不仅考虑了节点的空间分布特征,还融入了时间顺序的信息,进一步提升了模型的表现力。 3. **时空掩码操作** 针对计算效率问题,DG-STA 设计了一种高效的时空掩码策略。这一优化手段有效减少了不必要的计算开销,在保持高精度的同时实现了更快的推理速度。 #### 实验验证 通过对 DHG-14/28 数据集和 SHREC'17 Track 数据集的大规模测试,研究者证明了 DG-STA 方法相较于现有先进算法具有明显的优势。这些实验证明了 DG-STA 在处理复杂的三维手势识别场景时的强大能力。 ```python import torch import torch.nn as nn class DG_STA(nn.Module): def __init__(self, num_joints, input_dim, hidden_dim, output_dim): super(DG_STA, self).__init__() # 定义时空位置嵌入层 self.spatial_embedding = nn.Linear(input_dim, hidden_dim) self.temporal_embedding = nn.Linear(num_joints, hidden_dim) # 动态图模块 self.dynamic_graph_layer = DynamicGraphLayer(hidden_dim, hidden_dim) # 注意力机制 self.attention_layer = SpatialTemporalAttention(hidden_dim) # 输出预测头 self.output_head = nn.Sequential( nn.Linear(hidden_dim, output_dim), nn.Softmax(dim=-1) ) def forward(self, x): spatial_embedded = self.spatial_embedding(x) # 空间嵌入 temporal_embedded = self.temporal_embedding(x.permute(0, 2, 1)) # 时间嵌入 combined_features = spatial_embedded + temporal_embedded.permute(0, 2, 1) graph_output = self.dynamic_graph_layer(combined_features) # 动态图更新 attention_weights = self.attention_layer(graph_output) # 计算注意力分数 final_representation = (attention_weights * graph_output).sum(dim=1) predictions = self.output_head(final_representation) # 手势分类预测 return predictions ``` 上述代码片段展示了如何实现一个简化版的 DG-STA 架构。其中包含了关键组件如动态图层、时空注意力建模等部分。 --- ###
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

源代码杀手

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值