源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
传统算法:使用 Pygame 实现广度优先搜索(BFS)
使用 Pygame 模块实现了广度优先搜索(BFS)的动画演示。首先,通过邻接矩阵表示了一个图的结构,其中每个节点表示一个字符,每个字符的邻居表示与之相邻的节点。然后,通过广度优先搜索算法按层级顺序访问节点,过程中通过动画效果可视化每一步的变化。每次访问一个节点,该节点变为绿色,与其相邻的边变为黑色,形成广度优先搜索的动画效果。算法使用队列来维护当前层级的节点,并逐步向下一层级扩展。这个演示通过适度的延迟和颜色变化,直观展示了广度优先搜索在图上的层级遍历过程,帮助理解算法是如何逐层扩展搜索路径的。原创 2023-12-01 00:03:56 · 464 阅读 · 0 评论 -
传统算法: Pygame 实现深度优先搜索(DFS)
使用 Pygame 模块实现了深度优先搜索(DFS)的动画演示。首先,它通过邻接矩阵表示了一个图的结构,其中每个节点表示一个字符,每个字符的邻居表示与之相邻的节点。然后,通过深度优先搜索算法递归地访问所有节点,过程中通过动画效果可视化每一步的变化。每次访问一个节点,该节点变为绿色,与其相邻的边变为黑色,形成深度优先搜索的动画效果。这个演示通过适度的延迟和颜色变化,直观展示了深度优先搜索在图上的遍历过程,帮助理解算法是如何递归地访问节点,并建立搜索路径的。原创 2023-12-01 00:00:32 · 297 阅读 · 0 评论 -
传统算法:使用 Pygame 实现二分查找
首先,它生成一个有序数组,并通过 Pygame 在屏幕上绘制这个数组的条形图。接着,通过二分查找算法对有序数组进行查找,动画效果可视化每一步的变化。在查找的过程中,程序通过比较目标值和数组中间元素,逐步缩小搜索范围,高亮显示当前搜索范围的起始和结束位置。如果找到目标值,将相应的元素高亮显示,并在屏幕上显示“Target Found!这个演示旨在通过可视化方式帮助理解二分查找的进行和每一步的变化,特别是如何通过比较中间元素逐步缩小搜索范围,最终确定目标值的位置。原创 2023-11-30 23:56:21 · 241 阅读 · 0 评论 -
传统算法:使用 Pygame 实现线性查找
首先,它生成一个包含随机整数的数组,并通过 Pygame 在屏幕上绘制这个数组的条形图。接着,通过线性查找算法对数组进行查找,动画效果可视化每一步的变化。在查找的过程中,程序逐个遍历数组元素,如果找到目标值,将相应的元素高亮显示,并在屏幕上显示“Target Found!如果遍历完整个数组都没有找到目标值,将在屏幕上显示“Target Not Found!整个过程通过适度的延迟呈现,形成线性查找的动画效果。这个演示旨在通过可视化方式帮助理解线性查找的工作原理,尤其是每一步的查找过程和目标值是否被找到。原创 2023-11-30 23:53:11 · 203 阅读 · 0 评论 -
传统算法:使用 Pygame 实现归并排序
首先,它生成一个包含随机整数的数组,并通过 Pygame 在屏幕上绘制这个数组的条形图。接着,通过归并排序算法对数组进行排序,动画效果可视化每一步的排序过程。在排序的过程中,程序将数组递归地分成两半,分别进行排序,然后再将两个有序的子数组合并成一个有序的数组。动画效果通过适度的延迟呈现,形成归并排序的动画效果。整个排序过程通过适度的延迟,以每个步骤产生动画效果,使观察者能够更容易理解归并排序的工作原理。最终,当整个数组排序完成时,屏幕上的条形图全部变为蓝色,表示排序完成。原创 2023-11-30 23:50:26 · 223 阅读 · 0 评论 -
传统算法: Pygame 实现快速排序
使用 Pygame 模块实现了快速排序的动画演示。首先,它生成一个包含随机整数的数组,并通过 Pygame 在屏幕上绘制这个数组的条形图。接着,通过快速排序算法对数组进行排序,动画效果可视化每一步的排序过程。在排序的过程中,程序选择一个基准元素(pivot),将数组分成两部分,其中左边的元素小于基准,右边的元素大于基准,然后递归地对每个部分进行排序。动画效果通过适度的延迟呈现,形成快速排序的动画效果。整个排序过程通过适度的延迟,以每个步骤产生动画效果,使观察者能够更容易理解快速排序的工作原理。原创 2023-11-30 23:46:29 · 309 阅读 · 0 评论 -
传统算法:使用 Pygame 实现插入排序
使用 Pygame 模块实现了插入排序的动画演示。首先,它生成一个包含随机整数的数组,并通过 Pygame 在屏幕上绘制这个数组的条形图。接着,通过插入排序算法对数组进行排序,动画效果可视化每一步的排序过程。在排序的过程中,程序将当前元素插入到已排序的部分,通过适度的延迟使观察者能够清晰地看到每个元素插入的位置,形成插入排序的动画效果。整个排序过程通过适度的延迟,以每个步骤产生动画效果,使观察者能够更容易理解插入排序的工作原理。最终,当整个数组排序完成时,屏幕上的条形图全部变为蓝色,表示排序完成。原创 2023-11-30 23:42:58 · 193 阅读 · 0 评论 -
传统算法:使用 Pygame 实现选择排序
首先,它生成一个包含随机整数的数组,并通过 Pygame 在屏幕上绘制这个数组的条形图。接着,通过选择排序算法对数组进行排序,动画效果可视化每一步的排序过程。在排序的过程中,程序找到未排序部分的最小元素,并将其与未排序部分的第一个元素交换位置,同时在屏幕上的条形图也相应地进行交换,形成了选择排序的动画效果。整个排序过程通过适度的延迟,以每个步骤产生动画效果,使观察者能够清晰地看到排序的进行。最终,当整个数组排序完成时,屏幕上的条形图全部变为蓝色,表示排序完成。原创 2023-11-30 23:39:33 · 202 阅读 · 0 评论 -
传统算法:使用 Pygame 模块实现冒泡排序
使用 Pygame 模块实现了冒泡排序的动画演示。它首先生成一个包含随机整数的数组,并通过 Pygame 在屏幕上绘制这个数组的条形图。随后,通过冒泡排序算法对数组进行排序,同时使用动画效果可视化每一步的排序过程。在排序的过程中,相邻的元素进行比较,如果顺序不对则交换它们,同时在屏幕上的条形图也相应地进行交换,形成了冒泡排序的动画效果。最终,当整个数组排序完成时,屏幕上的条形图会全部变成蓝色,表示排序完成。整个过程通过适度的延迟来呈现出可观的动画效果。原创 2023-11-30 23:33:26 · 181 阅读 · 0 评论 -
传统算法: Pygame 实现一个简单的二阶马尔可夫链的状态转移过程
通过不断地在屏幕上显示当前状态和状态序列,演示了马尔可夫链的随机性和状态之间的转移。请注意,这是一个简化的例子,真实的马尔可夫链可能包含更多的状态和更复杂的状态转移概率。定义状态和转移概率矩阵: 使用 states 列表表示马尔可夫链的三个状态(A、B、C),使用 transition_matrix 表示状态之间的转移概率。按照状态转移概率转移: 根据当前状态和转移概率矩阵,使用 np.random.choice 随机选择下一个状态,模拟马尔可夫链的状态转移过程。2、定义马尔可夫链的状态和转移概率矩阵。原创 2023-11-30 23:22:50 · 511 阅读 · 0 评论 -
传统算法:使用Pygame实现SVM(支持向量机)算法
绘制决策边界和支持向量: 使用 pygame.draw.line 绘制决策边界和支持向量。决策边界使用实线表示,支持向量使用黑色圆圈表示。训练 SVM 模型: 使用 fit 方法训练 SVM 模型,其中 X 是数据点的坐标,y 是数据点的类别。绘制数据点: 使用 pygame.draw.circle 绘制数据点,红色表示类别 0,蓝色表示类别 1。获取支持向量: 计算支持向量,其中 margin 表示支持向量到决策边界的距离。计算决策边界: 使用系数计算决策边界的直线方程,存储在 xx 和 yy 中。原创 2023-11-30 23:17:03 · 400 阅读 · 0 评论 -
传统算法:使用 Pygame 实现K-Means 聚类算法
这段代码在每一次主循环中执行 K-Means 算法的一次迭代,同时绘制数据点、聚类中心以及数据点与聚类中心之间的关系。显示数据点与聚类中心之间的连线: 使用 pygame.draw.line 显示每个数据点与其所属簇的聚类中心之间的连线。绘制数据点和聚类中心: 使用 pygame.draw.circle 绘制数据点和聚类中心。计算每个数据点的分配: 计算每个数据点到各个聚类中心的距离,将其分配到距离最近的聚类中心。更新聚类中心: 根据每个簇的数据点,更新聚类中心为该簇内数据点的平均位置。原创 2023-11-30 23:11:01 · 485 阅读 · 0 评论 -
传统算法:使用pygame实现Dijkstra 算法
它维护一个优先队列,不断更新节点的最短距离,并在每次更新后通过 draw_graph() 函数绘制当前图形状态。整个代码结构主要是将 Dijkstra 算法的执行和图形的绘制结合在一起,以便在算法执行的每一步都能够可视化地展示当前的图形状态。主循环: 在主循环中,不断检测事件(例如关闭窗口的事件),更新并绘制图形,然后通过 pygame.display.flip() 刷新显示。绘制节点和边: draw_graph 函数根据当前的节点和边的状态绘制图形,包括节点的位置、边的连接和权重。原创 2023-11-30 23:01:17 · 780 阅读 · 0 评论