
深度学习推荐系统算法
文章平均质量分 71
深度学习推荐系统算法
源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
MovieLens:一个常用的电影推荐系统领域的数据集
MovieLens是一个常用的电影推荐系统领域的数据集,用于研究和开发推荐算法和机器学习模型。该数据集包含了用户对电影的评分、电影的信息以及用户的信息。原创 2023-10-10 11:16:08 · 4248 阅读 · 0 评论 -
推荐系统算法02:通俗易懂协同过滤算法实现
具体来说,第一行表示第一个用户对5部电影的评分情况,其中4表示该用户对第一部电影的评分为4分,5表示该用户对第二部电影的评分为5分,0表示该用户未对第三部电影进行评分,4表示该用户对第四部电影的评分为4分,0表示该用户未对第五部电影进行评分。类似地,可以理解其他行和列的含义。具体来说,对于每个用户,我们首先找到与其最相似的K个用户,然后根据这些相似用户的电影评分,计算推荐分数。协同过滤算法是一种经典的推荐算法,其基本思想是根据用户历史行为和兴趣,发现用户与物品之间的相似性,从而给用户推荐可能感兴趣的物品。原创 2023-04-21 10:54:03 · 382 阅读 · 0 评论 -
推荐系统算法01:快速入门协同过滤算法
0、知识快速介绍简单说就是找相似,那么第一时间想到的数学方法就是线性相关性、余弦公式。实现协同过滤,需要以下几个步骤:1)收集用户偏好。 (搜寻数据)2)找到相似的用户或物品。(制作数据集和特征提取)3)计算并推荐。(算法方法、策略)在一个推荐系统中,用户行为都会多于一种。那么,如何组合这些不同的用户行为呢?基本上有如下两种方式。将不同的行为分组对不同行为进行加权(减噪, 归一化等)在推荐的场景中,在用户-物品偏好的二维矩阵中,我们可以将一个用户对所有物品的偏好作为一个向原创 2021-10-05 18:03:06 · 1768 阅读 · 0 评论