
深度学习实战项目学习
文章平均质量分 79
源代码杀手
大厂算法工程师经验、高校教师。
互相学习,共同进步!想做项目,私聊需求。
展开
-
实战OpenPose项目4:实时准确的全身多人姿态估计和跟踪系统
官网:https://github.com/MVIG-SJTU/AlphaPose源码使用google服务器运行:https://colab.research.google.com/drive/14Zgotr2_F0LfvcpRi03uQdMvUbLQSgok?usp=sharing#scrollTo=3VBhQTOSoWab推理过程:! pip install pyyaml==5.2! pip install scipy==1.1.0! pip install torch==1.2.0 t..原创 2022-01-01 21:30:29 · 1975 阅读 · 0 评论 -
实战OpenPose项目3:pytorch 实现openpose(包括手和身体姿态估计)
目录简介快速入门下载训练好的模型运行演示简介pytorch实施openpose包括身体和手姿态估计,并且pytorch模型直接从转换openpose caffemodel通过caffemodel2pytorch。如果你有兴趣,你可以用同样的方式实现人脸关键点检测。注意人脸关键点检测器是使用 [Simon et al. 2017] 手。openpose 通过人体姿态估计的结果来检测手部,请参考https://github.com/CMU-Perceptual-Computing-Lab/openpose原创 2022-01-01 20:50:42 · 15581 阅读 · 0 评论 -
实战OpenPose项目2:开发环境配置与demo运行
ubuntu18或者使用docker确保你的电脑环境支持NVIDIA显卡驱动。在 Ubuntu 上使用 cudnn 7.5 的安装指南 cuda-10-0(用于 Tensorflow/Pytorch)Remove previous versions of CUDA:如果这一步已经安装好了cuda以及对应的NVIDIA版本就无需操作。sudo apt-get purge nvidia*sudo apt-get autoremovesudo apt-get autocleansudo rm -r原创 2022-01-01 20:00:28 · 1174 阅读 · 0 评论 -
实战OpenPose项目1:开篇使用文档
OpenPose 文档内容快速开始1.1. 在图像、视频或网络摄像头上运行1.2. 脸和手1.3. 不同的输出(JSON、图像、视频、UI)1.4. 只有没有背景图像的骨架1.5. 不运行所有 GPU1.6. 最大精度配置1.6.1. 具有最大精度的附加模型1.6.2. 具有较低误报的附加模型1.7. 3D 重建1.8. 追踪1.9. Kinect 2.0 作为 Windows 10 上的网络摄像头1.10. 主要标志高级快速入门错误解决3.1原创 2022-01-01 18:28:14 · 7246 阅读 · 0 评论