在本文中(论文地址:https://arxiv.org/pdf/2203.07669.pdf),我们提出了一种新的基于查询的人群检测检测框架。以前的基于查询的检测器有两个缺点:首先,将针对单个对象推断出多个预测,通常是在拥挤的场景中;其次,性能随着解码阶段深度的增加而饱和。受益于一对一标签分配规则的性质,我们提出了一种渐进式预测方法来解决上述问题。具体来说,我们首先选择接受的查询容易产生真正的积极预测,然后根据先前接受的预测改进其余的嘈杂查询。实验表明,我们的方法可以显着提高拥挤场景中基于查询的检测器的性能。配备我们的方法,稀疏 RCNN 在具有挑战性的问题上实现了 92.0% AP、41.4% MR^−2 和 83.2% JICrowdHuman数据集,在处理拥挤场景时优于指定的基于框的方法 MIP。此外,所提出的方法对拥挤度具有鲁棒性,仍然可以在像 CityPersons 和 COCO 这样的适度和轻微拥挤的数据集上获得一致的改进。
拥挤场景中的渐进式端到端目标检测(Deformable-DETR 实现)含源码
于 2023-05-29 20:13:19 首次发布
本文提出了一种新的基于查询的拥挤人群检测框架,采用渐进式预测方法解决单个对象多次预测和解码阶段性能饱和的问题。实验表明,该方法在CityPersons、COCO和CrowdHuman等数据集上显著提升了基于查询的检测器性能,特别是在拥挤场景中表现出优越性。
摘要由CSDN通过智能技术生成