第十六章 深度学习中的结构化概率模型
2020-3-29 深度学习笔记16 - 结构化概率模型 1 (非结构化建模的挑战-内存要求大/统计销量低/运行时间长)
2020-3-30 深度学习笔记16 - 结构化概率模型 2 (使用图描述模型结构)
2020-4-1 深度学习笔记16 - 结构化概率模型 3 (从图模型中采样,结构化建模的优势,学习依赖关系)
推断和近似推断Inference and Approximate Inference
解决变量之间如何相互关联的问题是我们使用概率模型的一个主要方式。例如
-
给定一组医学测试,我们可以询问患者可能患有什么疾病。
Given a set of medical tests, we can ask what disease a patient might have. -
在一个潜变量模型中,我们可能需要提取能够描述可观察变量 v v v的特征 E [ h ∣ v ] E[h \mid v] E[h∣v]。 有时我们需要解决这些问题来执行其他任务。
-
使用最大似然的准则来训练我们的模型。由于 l o g p ( v ) = E h ∼ p ( h ∣ v ) [ l o g p
本文详细介绍了深度学习中的结构化概率模型,包括推断和近似推断的概念,强调了在复杂模型中推断的挑战。此外,还探讨了深度学习模型中潜变量的作用,并以受限玻尔兹曼机(RBM)为例,解释了其在深度图模型中的应用和特点。
最低0.47元/天 解锁文章
1460

被折叠的 条评论
为什么被折叠?



