结合创新!多尺度特征融合+Transformer,参数和计算成本减半

本文探讨了如何通过结合多尺度特征和Transformer的自注意力机制提升模型在视觉识别和时间序列预测中的性能。特别介绍了SSA、Pathformer、DilateFormer和SAM等创新方法,这些方法通过优化注意力机制、自适应路径和多尺度聚合,显著提高了模型的精度、泛化能力和计算效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通过多尺度特征融合,模型能够捕捉到不同层次的视觉细节,而Transformer的自注意力机制能够在这些不同层次的特征之间建立联系,有效地整合全局上下文信息,让模型能够应对多样化的视觉场景和变化。

这种结合策略充分利用了二者各自的优势,不仅有助于模型实现更高的识别精度和更好的泛化能力,还能提高模型的性能,因为它可以更好地利用计算资源,通过并行处理不同尺度的特征来提高计算效率。

以分流自我注意(SSA)为例:它允许ViTs在每个注意层的混合尺度上建立注意模型,使自我关注能够学习不同大小的物体之间的关系,并同时减少标记的数量和计算成本,实现了不损失性能,却参数减半的效果。

本文分享8种多尺度特征融合+transformer结合创新方案,包含2024最新的成果。方法和创新点已经帮同学简单罗列,更具体的工作细节建议各位仔细阅读原文。

论文原文以及开源代码需要的同学看文末

SSA

Shunted Self-Attention via Multi-Scale Token Aggregation

方法:论文提出了一种新颖的Shunted Self-Attention (SSA)方案,用于明确考虑多尺度特征。与之前只关注一个注意力层中静态特征图的工作不同,作者保持不同尺度的特征图,这些特征图在一个自注意层中关注多尺度对象。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值