通过多尺度特征融合,模型能够捕捉到不同层次的视觉细节,而Transformer的自注意力机制能够在这些不同层次的特征之间建立联系,有效地整合全局上下文信息,让模型能够应对多样化的视觉场景和变化。
这种结合策略充分利用了二者各自的优势,不仅有助于模型实现更高的识别精度和更好的泛化能力,还能提高模型的性能,因为它可以更好地利用计算资源,通过并行处理不同尺度的特征来提高计算效率。
以分流自我注意(SSA)为例:它允许ViTs在每个注意层的混合尺度上建立注意模型,使自我关注能够学习不同大小的物体之间的关系,并同时减少标记的数量和计算成本,实现了不损失性能,却参数减半的效果。
本文分享8种多尺度特征融合+transformer结合创新方案,包含2024最新的成果。方法和创新点已经帮同学简单罗列,更具体的工作细节建议各位仔细阅读原文。
论文原文以及开源代码需要的同学看文末
SSA
Shunted Self-Attention via Multi-Scale Token Aggregation
方法:论文提出了一种新颖的Shunted Self-Attention (SSA)方案,用于明确考虑多尺度特征。与之前只关注一个注意力层中静态特征图的工作不同,作者保持不同尺度的特征图,这些特征图在一个自注意层中关注多尺度对象。