FAST-LIO
重点:
提出一种紧密耦合的迭代扩展卡尔曼滤波器将激光雷达点云数据与IMU数据融合;提出一种新的计算卡尔曼增益的公式,该公式的计算量不再依赖于测量维数,而是依赖于状态维数。
具体运行流程:
- 特征处理:特征点提取,角点和平面点;
- 状态向前传播(接收到IMU输入后执行),根据测量更新系统状态;
- LiDAR点反向传播:补偿 IMU
与 LiDAR 测量之间的时间差,将点云根据IMU运动绝对量矫正到每帧的最后一个了雷达点对齐到IMU坐标系下;
为了将计算得到的残差 z j κ z_{j}^{\kappa} zjκ与从IMU数据传播得到的状态预测 x ^ k \widehat{x}_{k} x k和协方差 P ^ k \widehat{P}_{k} P k融合,我们需要将残差 z j κ z z_{j}^{\kappa}z zjκz与真实状态 x k x_{k} xk和测量噪声的测量模型线性化。
参考论文:
FAST-LIO2
重点:
第一种是在不提取点云特征的情况下直接将原始点注册到地图(并随后更新地图,即建图)。此种方法能够充分的利用环境中的细微特征,从而提高准确性。取消特征提取模块,也能够使算法适应不同扫描模式的新型激光雷达(例如半固态激光雷达livox);第二个新颖处是通过增量kd-tree数据结构ikd-tree来维护建图,该结构能够实现增量更新(即点插入、删除)与动态重新平衡。与现有的动态数据结构(octree、R*-tree、nanoflann kd-tree)相比,ikd-tree实现了卓越的整体性能,同时支持对树结构进行下采样。
参考链接: