fast-LIO系列相关公式和原理推导

FAST-LIO

重点:

提出一种紧密耦合的迭代扩展卡尔曼滤波器将激光雷达点云数据与IMU数据融合;提出一种新的计算卡尔曼增益的公式,该公式的计算量不再依赖于测量维数,而是依赖于状态维数。

具体运行流程:

  • 特征处理:特征点提取,角点和平面点;
  • 状态向前传播(接收到IMU输入后执行),根据测量更新系统状态;
  • LiDAR点反向传播:补偿 IMU
    与 LiDAR 测量之间的时间差,将点云根据IMU运动绝对量矫正到每帧的最后一个了雷达点对齐到IMU坐标系下;
    为了将计算得到的残差 z j κ z_{j}^{\kappa} zjκ与从IMU数据传播得到的状态预测 x ^ k \widehat{x}_{k} x k和协方差 P ^ k \widehat{P}_{k} P k融合,我们需要将残差 z j κ z z_{j}^{\kappa}z zjκz与真实状态 x k x_{k} xk和测量噪声的测量模型线性化。

参考论文:

FAST-LIO2

重点:

第一种是在不提取点云特征的情况下直接将原始点注册到地图(并随后更新地图,即建图)。此种方法能够充分的利用环境中的细微特征,从而提高准确性。取消特征提取模块,也能够使算法适应不同扫描模式的新型激光雷达(例如半固态激光雷达livox);第二个新颖处是通过增量kd-tree数据结构ikd-tree来维护建图,该结构能够实现增量更新(即点插入、删除)与动态重新平衡。与现有的动态数据结构(octree、R*-tree、nanoflann kd-tree)相比,ikd-tree实现了卓越的整体性能,同时支持对树结构进行下采样。

参考链接:

FASTER-LIO

重点

总体系列的介绍:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

空白木各

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值