自回归模型(Autoregressive Model,AR )是一种统计模型,用于预测时间序列数据的未来值,基于过去的观测值。自回归模型属于线性模型,其基本思想是假设一个时间序列的当前值与其前几个时间点的值之间存在线性关系。
一、基本概念
自回归模型(Autoregressive Model,简称 AR 模型)是一种统计模型,用于分析和预测时间序列数据。以下是自回归模型的一些基本概念:
- 时间序列数据:时间序列是按照时间顺序排列的数据点集合,例如股票价格、气温记录或销售额等。
- 自回归:自回归模型的核心思想是使用时间序列过去的值来预测未来的值。"自回归"意味着模型使用自身的过去值作为预测未来值的依据。
- 滞后(Lag):在自回归模型中,时间序列的过去值被称为滞后值。例如,如果使用过去三天的数据来预测第四天的值,那么这三天的数据就是滞后值。
- 模型阶数(Order, p):自回归模型的阶数是指模型中使用的时间序列滞后值的数量。一个 p 阶自回归模型(AR§)会使用当前时刻之前 p 个时刻的值来预测当前时刻的值。
- 自回归系数:在 AR 模型中,每个滞后值都有一个与之对应的系数,这些系数表示滞后值对当前值的影响程度。
- 平稳性(Stationarity):自回归模型通常假设时间序列是平稳的,即时间序列的统计特性