人形机器人任务生成式模型是人工智能领域中的一项先进技术,它使机器人能够理解任务目标并自主生成执行任务的策略。
一、主流架构
目前业界的人形机器人任务生成式模型主要包括以下几种架构:
- VAE(变分自编码器):一种生成模型,能够学习输入数据的潜在表示,并能生成新的数据实例。
- AC Transformer(注意力控制变换器):结合了注意力机制的变换器模型,能够处理序列数据并生成任务策略。
- LSTM(长短期记忆网络):一种特殊的循环神经网络,能够学习长期依赖关系,适用于序列预测和生成任务。
成都人形机器人创新中心发布的R-DDPRM模型,是基于视觉扩散架构的,它代表了人形机器人任务生成式模型的一个重大突破。R-DDPRM模型能够让人形机器人跨越多个约束进行泛化,快速处理各种复杂任务,具有更高的稳定性和任务执行成功率,同时降低了对算力的依赖。
二、R-DDPRM
人形机器人视觉扩散架构是一种先进的技术,它允许人形机器人通过视觉系统来识别和理解周围的环境,并据此做出决策和行动。这种架构通常包括多个组件,如摄像头、图像处理单元、机器学习算法等,它们共同工作以实现对复杂场景的理解和响应。
中国首个基于视觉扩散架构的人形机器人任务生成式模型名为R-DDPRM,由成都人形机器人创新中心发布。R-DDPRM模型的关键技术特点和优势如下