人形机器人建模与控制(六) - 行走控制

本文探讨了腿式机器人行走控制的关键技术,包括行走周期、行走运动公式、LIPM模型、ZMP理论以及模型预测控制(MPC)。通过控制ZMP、DCM和脚步运动规划,实现机器人在复杂地形上的稳定行走。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第六篇:行走控制

1. 引言

腿式机器人在复杂地形中行走的能力使其成为探索、救援和军事等领域的重要研究对象。在本篇博文中,我们将探讨腿式机器人行走周期、行走运动公式、零力矩点(ZMP)和模型预测控制(MPC)等相关理论与实践方法。

2. 行走周期

在这里插入图片描述

腿式机器人的行走周期可以分为支撑相和摆动相两个主要阶段。在支撑相中,机器人的一只或多只脚与地面接触,支撑整个身体的重量。在摆动相中,抬起的脚移动到下一个支撑点。

  • 支撑相:支撑相的主要任务是保持平衡和支持身体重量。该阶段要求机器人能稳定地控制重心,使得零力矩点(ZMP)始终保持在支撑多边形内。

  • 摆动相:摆动相的主要任务是将抬起的脚移动到下一个预定的支撑点。这个过程需要考虑行走速度、步幅和避障等因素。

3. 行走运动公式

<think>好的,我需要为用户介绍如何绘制人形机器人控制系统框图。首先,我得理解用户的需求,他们可能希望了解控制系统的基本组成和各部分之间的关系。接下来,我应该从整体结构入手,分步骤解释每个模块的功能和连接方式。 首先,控制系统通常分为高层决策层、中层协调层和底层执行层。高层可能包括任务规划和环境感知,这部分需要处理传感器数据,比如视觉、力觉等,然后做出决策。中层负责运动规划,将高层的指令转化为具体的动作序列。底层则是执行器,如电机和驱动器,直接控制机器人的关节运动。 然后,我需要考虑反馈环节,比如传感器将执行结果反馈给各个层级,形成闭环控制。这部分可能涉及到状态估计和实时调整。此外,通信接口也很重要,确保各层之间的数据传输高效可靠。 在绘制框图时,要用方框表示各个模块,箭头表示信号或数据流向。可能需要使用LaTeX的TikZ库来绘制,但用户可能只需要概念上的框图,所以用文字描述结构即可。需要确保每个部分的功能明确,连接关系清晰。 还需要注意常见的子系统,如平衡控制、步态生成、路径规划等,这些可能需要单独的模块。同时,安全机制和故障处理也是控制系统的一部分,可能需要额外的模块来监控系统状态。 最后,我应该总结整个控制系统的流程,从感知到决策再到执行,并强调反馈的重要性。确保用户理解各部分的协作关系,以及如何将这些整合到一个完整的框图中。</think>绘制人形机器人控制系统框图需分层设计,以下为分步说明: #### 一、系统分层结构 $$控制系统 \rightarrow 分层架构:高层决策 \rightarrow 中层协调 \rightarrow 底层执行$$ 1. **感知层(输入)** - 传感器模块:视觉$(\text{Camera})$、力觉$(\mathbf{F}_s)$、IMU$(\omega,\alpha)$ - 环境建模:SLAM算法生成$map(x,y,\theta)$ 2. **决策层(中央处理)** - 任务规划:路径规划$path(t)=[x_d(t), y_d(t), \theta_d(t)]$ - 行为决策:有限状态机$State \in \{行走,抓取,避障\}$ 3. **控制层(核心算法)** ```mermaid graph TD A[逆运动学] -->|关节角θ_ref| B[PD控制器] B -->|力矩τ| C[执行器] C --> D[动力学模型] D -->|状态反馈| A ``` 4. **执行层(输出)** - 驱动器:电机转矩$\tau = K_p e + K_d \dot{e}$ - 机械传动:齿轮比$N=\frac{\omega_{motor}}{\omega_{joint}}$ #### 二、典型控制回路 $$平衡控制:\ddot{\theta} = \frac{mgh}{I} \sin\theta - \frac{K}{I}\dot{\theta}$$ 1. ZMP计算模块: $$x_{zmp} = \frac{\sum m_i(g+z_i)x_i - \sum m_i \ddot{x}_i z_i}{\sum m_i(g + \ddot{z}_i)}$$ 2. 全身协调控制- 优先级分配:任务空间$T_1 \succ T_2$ - 零空间投影:$q̈ = J^\dagger \ddot{x} + (I - J^\dagger J)\ddot{q}_0$ #### 三、通信架构 1. 实时总线:EtherCAT周期$T \leq 1ms$ 2. 数据流:传感器→FPGA→ROS节点→控制算法→CAN总线 #### 四、安全监控 - 故障检测:$\|\tau_{meas} - \tau_{cmd}\| > \epsilon$触发急停 - 能耗管理:$P_{max} = \sum_{i=1}^n |\tau_i \omega_i|$ 建议使用UML工具绘制,推荐分层着色: - 红色:安全关键模块 - 蓝色:实时控制回路 - 绿色:环境交互接口 实际案例参考Boston Atlas机器人控制系统,其采用混合系统建模: $$H_{hybrid} = \begin{cases} 连续动态 & \text{支撑相} \\ 离散跳变 & \text{着地冲击} \end{cases}$$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Stan Fu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值