DeepSeek和ChatGPT都是强大的语言模型,但它们在多个方面存在主要技术区别。
一、技术特征
1.基础架构
- 模型架构
- DeepSeek:基于Transformer架构,不过它在架构设计上进行了针对性优化,使其能更高效地处理大规模数据和长文本,对于超长上下文信息有较好的捕捉和理解能力。
- ChatGPT:同样采用Transformer架构,以Transformer的解码器为核心构建,侧重于生成连贯、自然的文本,在语言生成的流畅性和通用性上表现出色。
- 参数规模
- DeepSeek:参数规模有不同版本,以满足不同场景需求,在不断发展中持续扩大参数以提升性能和能力。
- ChatGPT:以GPT - 3.5和GPT - 4为例,GPT - 3.5有1750亿参数,GPT - 4在参数和性能上更进一步,其在处理复杂任务和理解广泛知识领域方面能力较强。
2.数据来源与训练
- 数据来源
- DeepSeek:训练数据来源广泛,涵盖多种领域的公开数据、专业文献、互联网文本等,还注重对中文数据的收集和整理,以更好服务中文用户和处理中文相关任务。
- ChatGPT:数据来源于互联网上大量文本,包括书籍、文章、网页等,注重多元性和广泛性,以学习通用语言模式和知识。
- 训练方式
- De