如何理解普吕克坐标(几何理解)

目标:如何理解普吕克坐标
最近看论文遇到直线的表达。因为最近在写项目,遇到了这类问题,但是这类问题,中文的资料不多,因此自己记录一下自己的理解。

定义: 传统的欧几里何的坐标系下,直线的向量表达: L : r → = P → + t l → L:\overrightarrow{r}=\overrightarrow{\bm{P}}+t\overrightarrow{\bm{l}} L:r =P +tl ;其中 P → = ( p 0 p 1 p 2 ) \overrightarrow{\bm{P}}=\begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix} P = p0p1p2 , l → = ( l 0 l 1 l 2 ) \overrightarrow{\bm{l}}=\begin{pmatrix} l_0 \\ l_1 \\ l_2 \end{pmatrix} l = l0l1l2 , 其中 P → \overrightarrow{\bm{P}} P 表示直线上的顶点, l → \overrightarrow{\bm{l}} l 是直线的方向。

定义: 在普吕克坐标坐标系下,直线的表达一般表示为 ( l → , m → ) (\overrightarrow{\bm{l}},\overrightarrow{\bm{m}}) (l ,m ),其中 m → = p → × l → \overrightarrow{\bm{m}} =\overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} m =p ×l ,称为: m o m e n t   v e c t o r moment \space vector moment vector, l → \overrightarrow{\bm{l}} l 是直线的方向。

但是很多人不是特别理解 ( l → , m → ) (\overrightarrow{\bm{l}},\overrightarrow{\bm{m}}) (l ,m )在几何意义上表达一条直线。以及它和欧几里何的坐标系的直线有啥关系?

答:
首先需要理解一个非常重要的向量 l → \overrightarrow{\bm{l}} l ,它是直线上的一个方向。它和欧几里何中的直线方向一样,表示直线方向。如下图,是直线的方向,一般不具有长度信息,可以normlize,但是如果它不normlize,它提供一个scale的量,可以表示为 c = ∣ l → ∣ c=|\overrightarrow{\bm{l}}| c=l 。而这个 c c c有提供给了 m → \overrightarrow{\bm{m}} m 因为 m → \overrightarrow{\bm{m}} m 也来源于 l → \overrightarrow{\bm{l}} l )。 通过后面的计算发现 l → \overrightarrow{\bm{l}} l 不提供scale变量,其实scale变量来源于直线上的顶点 P → \overrightarrow{\bm{P}} P P → \overrightarrow{\bm{P}} P m → \overrightarrow{\bm{m}} m 共同决定了直线的另一个重要变量,直线上的顶点。下图表示为 P → ⊥ \overrightarrow{\bm{P}}\bot P ,它是垂直于直线的顶点。

在这里插入图片描述

再次理解另一个非常重要的向量 m → \overrightarrow{\bm{m}} m ,它是除了表示方向之外,它还具有长度信息,且它和在直线上的顶点 p → \overrightarrow{\bm{p}} p 无关。这是一个非常重要的性质。
证明: m → \overrightarrow{\bm{m}} m p → \overrightarrow{\bm{p}} p (在直线上的任意的顶点)无关,假设 m → = p → × l → \overrightarrow{\bm{m}} = \overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} m =p ×l ;直线上另一的顶点 p ′ → \overrightarrow{\bm{p'}} p 为直线上任意的顶点, p ′ → − p → = λ l → \overrightarrow{\bm{p'}}- \overrightarrow{\bm{p}}=\lambda \overrightarrow{\bm{l}} p p =λl 。证明和直线上的顶点无关,因此得到如下:
p ′ → × l → = ( λ l → + p → ) × l → = λ l → × l → + p → × l → = p → × l → = m → \overrightarrow{\bm{p'}} \times \overrightarrow{\bm{l}} \\ = (\lambda \overrightarrow{\bm{l}}+\overrightarrow{\bm{p}}) \times \overrightarrow{\bm{l}} \\ = \lambda \overrightarrow{\bm{l}} \times \overrightarrow{\bm{l}}+\overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} \\ = \overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} = \overrightarrow{\bm{m}} p ×l =(λl +p )×l =λl ×l +p ×l =p ×l =m

因此可以看到图上: m → \overrightarrow{\bm{m}} m 是垂直于 p → \overrightarrow{\bm{p}} p l → \overrightarrow{\bm{l}} l 所在的平面。 m → \overrightarrow{\bm{m}} m 的长度表示为 ∣ m → ∣ |\overrightarrow{\bm{m}}| m 。原点到直线的垂直点表示为 P → ⊥ \overrightarrow{\bm{P}}\bot P
如果向量 l → \overrightarrow{\bm{l}} l 是单位向量的时候。向量 P → ⊥ \overrightarrow{\bm{P}}\bot P 的长度就和 ∣ m → ∣ |\overrightarrow{\bm{m}}| m 长度一样,它也是定位直线的顶点,相当于直线的一个顶点(因此直线方向和顶点,唯一决定一条直线)。为了证明这个结论,假设 l ′ → \overrightarrow{\bm{l}'} l 为直线上的单位向量,因为 m → \overrightarrow{\bm{m}} m 来源于 p → × l → \overrightarrow{\bm{p}} \times \overrightarrow{\bm{l}} p ×l ,因此它也会变化,可以表示为 m ′ → \overrightarrow{\bm{m}'} m 。因此:c l ′ → = l → \overrightarrow{\bm{l}'} =\overrightarrow{\bm{l}} l =l ;c m ′ → = m → \overrightarrow{\bm{m}'}=\overrightarrow{\bm{m}} m =m

计算 P → ⊥ = l ′ → × m ′ → \overrightarrow{\bm{P}}\bot = \overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m'}} P =l ×m

表达向量如下: P → ⊥ P → = t l ′ → \overrightarrow{\bm{P}}\bot \overrightarrow{\bm{P}} = t \overrightarrow{\bm{l}'} P P =tl , O → P → = P → \overrightarrow{\bm{O}}\overrightarrow{\bm{P}}=\overrightarrow{\bm{P}} O P =P (因为O是原点).

因为知道 c o s ( θ ) = ∣ P → ⊥ P → ∣ / ∣ O → P → ∣ = ( l ′ → ⋅ P → ) / ( ∣ l ′ → ∣ ⋅ ∣ P → ∣ ) cos(\theta) = |\overrightarrow{\bm{P}}\bot \overrightarrow{\bm{P}}| / |\overrightarrow{\bm{O}}\overrightarrow{\bm{P}}| = (\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}}) / (| \overrightarrow{\bm{l}'}| \cdot |\overrightarrow{\bm{P}}|) cos(θ)=P P ∣/∣O P =(l P )/(l P ),这是基本的三角形函数的公式。

∣ P → ⊥ P → ∣ = ∣ O → P → ∣ c o s ( θ ) = ( l ′ → ⋅ P → ) / ∣ l ′ → ∣ = l ′ → ⋅ P → ( 因为 l ′ → 是单位向量 ) |\overrightarrow{\bm{P}}\bot \overrightarrow{\bm{P}}| \\=|\overrightarrow{\bm{O}}\overrightarrow{\bm{P}}|cos(\theta) \\ = (\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}} )/ |\overrightarrow{\bm{l}'}| \\ = \overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}} (因为\overrightarrow{\bm{l}'}是单位向量) P P =O P cos(θ)=(l P )/∣l =l P (因为l 是单位向量)

计算上面的公式,可以得到垂直点如下:

P → ⊥ = P → − ( l ′ → ⋅ P → ) l ′ → = ( l ′ → ⋅ l ′ → ) P → − ( l ′ → ⋅ P → ) l ′ → = l ′ → × ( P → × l ′ → ) = l ′ → × m ′ → \overrightarrow{\bm{P}}\bot =\overrightarrow{\bm{P}}-(\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}})\overrightarrow{\bm{l}'} \\ = (\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{l}'})\overrightarrow{\bm{P}} - (\overrightarrow{\bm{l}'} \cdot \overrightarrow{\bm{P}})\overrightarrow{\bm{l}'} \\ = \overrightarrow{\bm{l}'} \times (\overrightarrow{\bm{P}} \times \overrightarrow{\bm{l}'}) \\ = \overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m}'} P =P (l P )l =(l l )P (l P )l =l ×(P ×l )=l ×m

从上公式可以看出,直线上的顶点 P → ⊥ \overrightarrow{\bm{P}}\bot P 有这两个公式 l ′ → × m ′ → \overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m}'} l ×m 得到。它也是决定了直线的唯一性。 P → ⊥ \overrightarrow{\bm{P}}\bot P 变化,虽然方向不变,但是它位置会变化,也表示直线的位置变化。因此直线上的顶点,由 l ′ → × m ′ → \overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m}'} l ×m 决定。

如果 l → \overrightarrow{\bm{l}} l 不是单位向量,它拥有自己的长度的时候,因为 l → \overrightarrow{\bm{l}} l 可以单位化表示为 l ′ → = l → / ∣ l → ∣ = l → / c \overrightarrow{\bm{l}'}=\overrightarrow{\bm{l}}/|\overrightarrow{\bm{l}}|=\overrightarrow{\bm{l}}/c l =l /∣l =l /c,因此公式中:
P → ⊥ = l ′ → × m ′ → = ( l → / ∣ l → ∣ ) × m ′ → = ( l → × m ′ → ) / ∣ l → ∣ = ( l → × m ′ → ) / c = ( l → × ( m → / c ) ) / c = ( l → × m → ) / c 2 \overrightarrow{\bm{P}}\bot =\overrightarrow{\bm{l}'} \times \overrightarrow{\bm{m}'} = (\overrightarrow{\bm{l}}/|\overrightarrow{\bm{l}}|) \times \overrightarrow{\bm{m}'} \\ = (\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}'})/|\overrightarrow{\bm{l}}| =(\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}'} )/c \\ = (\overrightarrow{\bm{l}} \times (\overrightarrow{\bm{m}}/c ))/c=(\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}}) /c^2 P =l ×m =(l /∣l )×m =(l ×m )/∣l =(l ×m )/c=(l ×(m /c))/c=(l ×m )/c2

从公式可以看出来:
原点到直线的距离,可以表示为 ∣ P → ⊥ ∣ = ∣ ( l → × m → ) ∣ / c 2 = ∣ ( l → × m → ) ∣ / ∣ l → ∣ 2 |\overrightarrow{\bm{P}}\bot|=|(\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}})| / c^2=|(\overrightarrow{\bm{l}} \times \overrightarrow{\bm{m}})|/|\overrightarrow{\bm{l}}|^2 P ⊥∣=(l ×m )∣/c2=(l ×m )∣/∣l 2,可以得到,无论 l → \overrightarrow{\bm{l}} l 是否normlize,只要 m → \overrightarrow{\bm{m}} m 和 normlized之后的 l → \overrightarrow{\bm{l}} l 保持一致,都可以。

同时可以看出来
( l → , m → ) = ( c l → , c m → ) (\overrightarrow{\bm{l}} ,\overrightarrow{\bm{m}} ) = (c\overrightarrow{\bm{l}} , c\overrightarrow{\bm{m}} ) (l ,m )=(cl ,cm )
等号表示它们是同一个直线的表达。
证明:直接代入 P → ⊥ \overrightarrow{\bm{P}}\bot P 公式就行了。

参考论文:Plücker Coordinates for Lines in the Space ∗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值