普吕克坐标下的线特征观测模型

本文探讨了普吕克坐标在描述空间直线时的四个自由度,以及如何通过普吕克矩阵转换空间线在不同坐标系中的表示。同时,介绍了线特征的重投影误差和其对位姿、空间线的雅克比矩阵,阐述了在相机成像和空间线运动变换中的数学关系。

普吕克坐标:

空间直线的方程是:

Ax+By+Cz+D=0

其中含有四个变化量(A,B,C,D)所以具有四个自由度

首先定义空间线上两点齐次坐标:

其普吕克矩阵定义为:

其中T有6个未知元素(4*4的反对称矩阵,aii=0,aij=-aji),对于空间直线上的两个点,普吕克坐标仅差一个系数,即L=αL'

普吕克坐标可以反映出直线的四个自由度(??),可以由普吕克矩阵的6个未知元素构成:

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值