Reference
- 官方wiki
- SLAM 轨迹评估工具EVO
- 评价SLAM算法的一些指标及评价工具evo的使用方法
- [VIO|实践]evo测评工具的安装与使用
- 使用evo工具评测SLAM算法性能并可视化结果
- 轨迹评估工具使用总结(二) evo 绘图& ROS map
评价指标
绝对轨迹误差(ATE:abosulte trajectory error):直接计算相机位姿的真实值与SLAM系统的估计值之间的差,程序首先根据位姿的时间戳将真实值和估计值进行对齐, 然后计算每对位姿之间的差值, 并最终以图表的形式输出, 该标准非常适合于评估视觉 SLAM 系统的性能。
相对位姿误差(RPE:relative pose error):用于计算相同两个时间戳上的位姿变化量的差, 同样, 在用时间戳对齐之后, 真实位姿和估计位姿均每隔一段相同时间计算位姿的变化量, 然后对该变化量做差, 以获得相对位姿误差, 该标准适合于估计系统的漂移。
均方根误差( RMSE:Root Mean Square Error): 是观测值与真值偏差的平方和与观测次数m比值的平方根。 是用来衡量观测值同真值之间的偏差。表达式为:
平均绝对误差(MAE:Mean Absolute Error ): 是绝对误差的平均值,能更好地反映预测值误差的实际情况。表达式为:
标准差(SD: Standard Deviation ): 是方差的算数平方根.是用来衡量一组数自身的离散程度.表达式为:
othres
- 直接在~/.evo/文件夹下的settings.json文件中设置各种默认参数:其中包括线宽、背景、尺寸等。
- 灵活应用-a、-s、-v等其他各种参数其中有一条:当我们想要多个轨迹匹配到同一个原点那么可以使用参数如下:
evo_traj kitti a.txt b.txt c.txt -p --align_origin