引言
GNSS中的硬件延迟是指不同类型的导航信号在卫星和接收机端不同通道产生的时间延迟不一致。上述不一致造成的差异通常被定义为码偏差(对测距码即伪距产生影响)。DCB包括卫星端码偏差和接收机端码偏差,一般来说接收机端的DCB被接收机钟差所吸收,可以跟接收机钟差一起解算。若需提高定位精度,卫星端的码偏差需进行校正。目前,码偏差产品主要分为2类:① 广播星历播发的时间群延迟(time group delay,TGD)产品;② IGS分析中心提供的高精度后处理差分码偏差(differential code bias,DCB)产品。因此,TGD产品相比于DCB产品,精度低于DCB产品且适用于实时场景。后续主要围绕TGD/DCB之间的关系及其对应的改正模型进行阐述。为方便理解,本文首先对GPS现有的TGD/DCB改正模型进行整理,然后导出BDS的校正模型,使之应用到多种场景。
伪距观测方程
式中,为三频点伪距观测值,
是卫星与接收机的几何距离,
是指由于卫星轨道及对流层延迟带来的误差,
为第一频点的电离层误差,
和
是与频点相关的因子(
,
),
是接收机钟差,
是指卫星钟差,
是对应频点的硬件延迟,以上单位均为m。
GPS的TGD/DCB改正模型
对于GPS而言,其广播星历及精密星历是采用P1/P2无电离层组合进行卫星钟差估计。因此,广播星历钟差及精密星历钟差
均包含P1/P2无电离层组合的硬件延迟。当用户基于P1/P2无电离层组合定位解算时,无需考虑硬件延迟;反之,若用户使用P1、P2单频或其他组合时,均需要考虑硬件延迟的影响,否则会影响定位解算的精度。
将上式代入到伪距观测方程可得
其中,和
均不能在绝对意义上确定,但两者差值即差分码偏差,可以确定。在此以P1、P2类型为例,两者的码偏差可表示为
最后可以得出GPS DCB的改正模型
GPS TGD的改正模型可参考已发布的ICD文件,其观测方程如下
对比GPS TGD和DCB的改正模型,可得
注:若用户使用C/A码,用户需借助外部文件获取将C/A码归化到P码,然后再进行TGD/DCB改正。
BDS的TGD/DCB改正模型
区别于GPS,BDS广播星历的钟差基准参考B3频点,多数机构的精密钟差基准是B1/B3无电离层组合。因此,BDS广播星历钟差及精密星历钟差
计算公式如下
将上式代入到伪距观测方程可得
同样,BDS TGD的改正模型可参考已发布的ICD文件,其观测方程如下
式中,与
可参照BDS广播星历的RINEX格式。
对比BDS TGD和DCB的改正模型,可得
BDS不同频点组合下的观测方程如下:
式中,代表B1/B2组合,
代表B1/B3组合定位,
及
同上,
。
精密星历与导航星历钟差基准不同,若需对广播星历钟差进行评估,需将其归化至相同,现以广播星历B3,精密星历B1/B3为例对公式进行推导,“精密星历-导航星历”如下
上式即可说明,因精密星历与导航星历钟差基准不同,两者相减时需扣除系统误差影响,其可通过广播星历获取TGD参数或通过IGS的DCB产品。
参考文献
Fei Guo, Xiaohong Zhang*, Jinling Wang. Timing group delay and differential code bias corrections for BeiDou positioning. Journal of Geodesy, 2015, 89(5):427-445.
刘东亮,成芳,沈朋礼,李艳红,李晓婉.北斗三号全球卫星导航系统空间信号精度评估[J].全球定位系统,2022,47(02):114-125.