干旱作为一种常见的自然灾害,具有发生频率高、持续时间较长、范围广、时空分布不均等特点,对农业生产和生态系统的影响巨大。
干旱的发生与温度、风速、湿度有关,并且与降雨的历时、降水强度、雨天分布等特征有密切的关系,干旱的研究和分析对手农业生产、生态平衡、水资源的合理规划和优化配置具有重要的意义(本茂松等,2003;Mishra andSingh,2010 ) 。
必
全球变暖在目前的研究中已经达成共识,由此升发的全球以及局部区域的高温天气以及旱涝等灾害频发,给生态系统平衡、农业生产以及社会经济可持续发展带来严重影响,已引起全球的高度重视( Kennedy(2003;蓝永超等,2005;马明敏,2008)。
特别是在气候变化背景下,降水与气温的变化直接影响了我国旱涝的时空格局( Wang et al.,2011; Zheng etal.,2015)。自1950年以来,中国的诸多地区频繁发生干旱,尤其是1990年后,北方大部分地区都会发生持续时间长的严重干旱事件( Wang et al.,2011),甚至2005年以来西南地区也出现多次大旱( 2005年春季的云南大旱,2006年夏季的川渝特大干旱,2009—2012年整个西南地区出现有气象记录以来最严重的气象干旱事件)(尹晗和李耀辉,2013 ) 。
我国东北地区是典型的“气候敏感区”,是气候变暖影响最为敏感地区之一,同时作为我国最大的商品粮产区和重要的重工业和能源基地,已经成为我国干旱问题显著的地区之一(姜晓艳等,2009;Dai,2011)。尤其是1990s中期以来,干旱不断加剧(孙力等,2003;袭祝香,2013 ) ,导致生态系统的脆弱性随之加大,制约了东北地区的农业发展和生态系统平衡( Chen et al.,2011;Zheng et al.,2015)。根据农业部门统计结果,1980s时期东北地区平均每年受到干旱影响的面积可达300万hm2,并且干旱影响的面积一直处于增长态势,1990s增长约33%,到2000s增加到550万hm2,干旱程度明显加剧(陈晓华,2009 )。另外,因旱损失由2004年的118.9亿元增加到2007年的超过303.7亿元。
对于干旱的争论也层出不穷,许多专家和学者认为,干旱的主要原因是全球变暖,如Dai等(2004,2011)在对全球的干旱研究中指出,自20世纪50年代,尤其是1970年后,全球气温的上升导致了全球干旱的加剧,增加了干旱的风险;但Sheffield等( 2012)指出,由于干旱算法的不确定性可能高估了全球的干旱。对于东北地区的干旱趋势诸多学者的观点也不尽相同,许多学者认为,近年来东北地区干旱发生频率增加,干旱更加严重(马柱国等,2006; Yu et al.,2014) ;而王亚平等( 2008)在东北地区干旱分析中发现,20世纪80年代后东北大部分地区呈现出干旱缓解的趋势。因此,干旱问题作为全球热点之一也存在很多争议,东北地区的干旱趋势也尚未统一。
鉴于此,本研究选取我国重要的粮食生产基地和气候变化敏感区的东北地区(主要针对黑龙江、吉林、辽宁3省)作为研究区域。在气候变化背景下,剖析东北地区气候变化特点和趋势。针对干旱算法不确定性带来的结果差异,本文选取国标推荐的两种不同蒸散发算法,深入探讨干旱演变特征,并对其结果进行对比和验证。在此基础上,为进一步揭示东北地区干早演变机理,对影响东北地区干旱的大尺度气候因子进行细致分析,综合刻画东北地区干旱演变规律。本研究结果可以为东北地区的粮食生产、生态环境、水资源调度、经济发展等方面提供理论依据,同时对不同区域的干旱相关研究具有一定的借鉴意义。
1.2国内外研究进展
随着全球气候变暖、气候系统稳定性降低,旱涝等自然灾害频发,灾害持续时间、范围及其强度也呈现增加趋势( Dai et al.,2011; IPCC,2012)。东北地区作为全球变暖敏感区之一,也是我国干早高风险区,对东北地区干早研究已取得许多研究成果。围绕本研究内容,分别从干早的定义和干旱指数、气候变化背景下干旱的演变规律、干旱与大气环流的响应关系、东北地区干旱研究现状4个方面系统分析了当前国内外研究的热点、发展方向以及取得的成果。
1.2.1 干旱的定义与干旱指标
1.2.1.1干旱的定义与类型
干旱作为频发的一种极端气候事件(Heim et al.,2002;Dai et al.,2011 ),最初被定义为长期累积降水缺乏的结果。Mishra和Singh ( 2010 )提出,干旱是在一定的时期范围内降水量比多年平均明显偏少的现象。这两种定义仅从供水角度,均是以降水量与多年平均降水量的偏差作为衡量指标,这种思想一直影响至今。但随着干旱研究的开展,诸多学者认为干旱不仅要考虑水资源供给,还要考虑水资源需求( Palmer,1965; Wilhiteet al.,1985;Bonacci and Ognjen,1993;Mishra and Singh,2010)。但由于研究领域和角度的不同,气象、水文变量、社会经济因素的不同以及不同区域需水量的差异,很难对干早有一个统一的定义。
可根据干旱不同的研究角度将干旱划分为以下4类。
( 1)气象干早。Palmer ( 1965)提出“干旱是指某时间范围内,水分供应比多年平均明显并持续偏低的现象”。但也有学者把气象干旱简单的描述为在区域内某时段降水明显偏少的现象( Santos,1983 ),降水量作为影响气象干早最重要的影响因素之一,普遍用于气象干旱分析中。但这一概念强调了降水的影响作用,并没有考虑水循环中另一重要环节——蒸散发的影响,而已有的大量研究中表明,降水和蒸散发是共同影响干旱的重要因素( Hodell et al.,2001;Mishra and Singh,2010;刘文琨等,2014;李柏贞和周广胜,2014)。《气象干旱标准等级》( GB/T 20481——2006 )中,对气象干旱重新定义为某时段由于蒸发量和降水量的收支不平衡,水分支出大于水分收入而造成的水分短缺现象,强调了水分的收支平衡,即降水与蒸发之间的关系,也更全面地表征了干旱程度。
( 2)水文干旱。指一段时期内地表、地下水短缺导致水资源系统中可用水的缺乏,径流数据已经广泛地应用于水文干旱研究中( Clausen andPearson,1995;Sen,2014)。强调河川水量异常导致的缺水现象(袁文平和周广胜,2004)。水文干旱通常由气象干旱引起,多发生于气象干旱之后。已有研究表明,除气候条件外,流域地质状况也是影响水文干旱的一个重要因素( Zecharias and Brutsaert,1988;Vogel and Kroll,1992 )。
( 3)农业干早。指一段时间内土壤湿度下降,地表水、地下水资源没有对土壤水分进行补充而导致粮食减产的现象(Mishra and Singh,2010 )。土壤湿度的变化受多种因素的影响,这些因素同样也是气象干旱与水文干早的主要原因,同时也造成作物实际蒸腾蒸发量与作物潜在蒸腾蒸发量的差异。农业干旱与作物生长关系密切,气候条件决定了作物生长期的水分供应,同时作物的生物特性、生长期所处阶段以及土壤理化性质也对作物生长状况产生一定影响。因此,在研究农业干旱时,不仅要将气候条件(降水、气温等)和土壤湿度等纳入计算,同时还要考虑作物的布局、品种以及生长特性和生长阶段,共同表征农业干旱(袁文平和周广胜,2004;董秋婷等,2011;张淑杰等,2013; Yin et al.,2016a,2016b;Guo et al.,2017)。由于气象因素是农业干旱形成的主要因素,农业干旱一般发生在气象干旱之后,对于农业旱情的评估也常用气象干旱指标(冯平,1997 )。
(4)社会经济干旱。指一段时间内,水资源供应达不到社会生产和人类活动所需水总量的现象(Dai,2011)。在自然系统和人类社会经济系统中,由于水分短缺导致的水资源无法满足经济生产和人类活动需水量的现象(袁文平和周广胜,2004;Mishra and Singh,2010)。从时间顺序来看,社会经济干旱是干旱发展的最后阶段,通常出现在气象干旱、水文干旱及农业干旱之后,主要用来表征水资源无法满足社会经济需求的情况,强调水资源的短缺对社会经济以及居民生活的影响。
1.2.1.2干旱指标
为了能够更好定量化干旱,采用干旱指标的形式反映干旱的程度。从不同研究角度出发,所选取的干旱指标也有所差异。根据干旱的分类,干旱指标大体可以分为气象干旱指标、农业干旱指标、水文干旱指标和社会经济干旱指标4类(Mishra and Singh,2010)。在干旱研究中,气象干旱指标在一定程度上能够反映农业、水文以及社会经济干旱,具有重要的基础意义,可以为其他指标的分析提供研究背景和参考依据(邹旭恺等,2005 )。
干旱指标的选取和计算是干旱事件时空演变特征、风险评估的前提和基础,干旱成因复杂,受多种气候条件共同影响,评价指标不同可能会导致最终的评价结果差异很大,甚至相互矛盾(李维京等,2003;Dai et al.,2004;Vicenteserrano et al.,2010;Dai,2011 ;Sheffield,2012)。不少科学工作者针对干旱指标的选取做过探讨,主要有标准化降水指数(SPI)(武建军等,2011;Yu et al.,2014;Wang et al.,2014)、降雨Z指标(鞠笑生等,1998;袁文平和周文胜,2004)、标准化降水蒸散指数(SPEI )( Vicente-Serrano et al.,2010;张勃等,2015;李翔翔等,2017;沈国强等,2017)和帕尔默干旱指数(PDSI )(叶敏等,2013;王亚许等,2016)等。
SPI是基于多年降水概率分布的干旱指标,可以反映某时段内降水量与多年平均水平的偏差,因其计算简单得到广泛应用,但SPI仅考虑水循环中的水分供给环节,未考虑蒸散发能力的改变对干旱带来的影响( Vicente-Serrano ct al.,2010)。PDSI基于土壤水分平衡,结合前期降水、蒸散发和土壤有效持水量定量化评估干旱的指标。该指标考虑因子较多,计算复杂,对数据要求较高,使得PDSI在计算时诸多地区受到数据资料的限制,并且PDSI在计算中使用了多个经验参数,这些经验参数的取值依赖于研究的区域(杨庆等,2017),在干旱实证研究中其结果准确性并不高( Dai etal.,2004;Zhang et al.,2017)。SPEI是在SPI的基础上发展而来,不仅延续了SPI多时间尺度的优势,并且综合考虑了降水与潜在蒸散发,近些年在干旱监测中得到了广泛应用( Vicente-Serrano et al.,2010;孙滨峰等,2015;Stagge et al.,2016;李明等,2016 )。Vicente-Serrano等(2010,2012),研究指出SPEI与PDSI反映旱涝的能力相当,且均具有一定的物理机理,但SPEI具有需求变量少、计算方法更为简单和多时间尺度的优势。
已有研究发现、与PDSI相比,SPI2、SPI3与土壤湿度( 0.5m)相关性更高,能够更好地反映农业干旱( Mishra and Singh,2010;Wang ct al.,2016 )。Xu等( 2015b)从气候学角度在全国的干旱时空变化研究中发现,SP13、RDI3、SPEI3都可以验证遥感土壤水分数据。
1.2.2气候变化背景下干旱的演变规律研究进展
全球气候变化正在加剧,由此带来的干旱影响面积不断增加,发生频率也有所上涨(刘燕华等,2005;Utsumi et al.,2011 ; Trenberth et al.,2014)。国际大气研究中心指出,从1970——2000年,全球遭受严重干旱的地区占全球陆地面积的比重增加了2倍(孙丽,2014;NCAR, 2005 )。在IPCC第五次评估报告中指出,干早已经成为全球最严重的自然灾害之一,并且在未来一段时期内,干旱风险将呈现不断增加的趋势( IPCc,2012),因此,干旱的研究已经成为当今热点课题之一。
众多学者在研究中提出,干旱的加剧主要原因很可能是全球变暖( Sherwood and Qiang,2014;Rajah et al.,2015;Trenberth et al.,2014 ) , IPCC第五次报告中提出,全球陆面平均气温(1880——2012年)上升了0.89℃,尤其是20世纪50年代以来气温显著上升。气温的升高加快了地表水分蒸发过程,引发水循环加速从而导致降水量也增加。但根据克劳休斯-克拉勃龙( Clausius-Clapyeron)方程,“全球变暖”的加剧引起饱和水的含水量增加,引起短期极端降水(日极端降水或小时极端降水)事件的增多,Utsumi等( 2011)研究表明,气温每上升1℃,极端降水会增加6%~7%(超过降水量的变化率,1% ~ 3%/℃)。极端降水的增加势必会增大洪涝的风险,同时不降水天数也在增加,加大了极端干旱的发生概率。针对降水的时间分配均一性问题,Rajah ( 2015)选取全球逐日降水数据,引人基尼系数的方法,比较分析降水序列各年Gini系数。全球日降水具有非均一性的趋势,证实了全球变暖使得降水过程更容易形成“长期不下雨,或强降雨”的极端状况,降水在时间尺度上的分配更为不均,增大了旱涝的风险。
近年来,区域干旱演变规律从单尺度指标小范围的分析,逐步过渡到多尺度多指标大范围的研究。不同学者采用历史数据、实测数据、重建数据、反演数据等多种数据集,通过游程理论、滑动平均、小波分析、Copula方法、频谱分析、经验正交函数等方法,建立了SPI、SPEI、PDSI .降水Z指数等诸多指标体系,对干旱事件的持续时间、干旱程度、干旱频率、周期、干旱重现期、发生范围等特征进行了分析,时间尺度包括50年、100年、200年甚至2000年等多时间尺度,空间尺度包括全球、各国以及不同地区范围等,取得了丰富和有意义的成果(张丕远等,1997;严华生等,2004;郝志新等,2010;邹旭恺等,2010;徐燕等,2011;Zhanget al.,2012;胡亚楠,2013;叶敏等,2013; Yu et al.,2014;Spinoni etal.,2014;Claran and wei,2014;卢洪健等,2015;沈国强等,2017a;2017b )。
但对于干旱是否加剧,国内外学者研究结果依然存在争议。在全球变暖的持续影响下,通常认为全球趋于干旱化的趋势,但从全球水热平衡的角度来看,地面净辐射量整体上呈现下降趋势并伴随风速的停滞,势必会导致蒸发能力的下降,引起水循环过程减缓( Sherwood andQiang,2014)。但不少学者通过综合考虑气候变化因素(包括降水、气温、风速、辐射、日照时数等气候因素),发现干旱趋势并未显著增加( Sheffield,2012;赵静等,2015;Zhang,2016 )。因此,干旱是否加剧尚无定论。Chen ( 2005)研究中发现,全球/区域蒸发皿长时间序列的趋势与全球变暖带来的干旱趋势不一致的现象,称之为“蒸发悖论”。基于此,在全球变化背景下评估区域或全球干旱趋势时,不能仅考虑全球变暖对干旱的影响,需要将气候变化的诸多因素纳入分析中,综合探讨干旱变化趋势更具有科学意义。
1.2.3 旱涝与大气环流相关研究进展
1.2.3.1旱涝与北极涛动(AO)关系研究
太阳辐射是地球的最主要能量来源,由于地球本身的自转作用外加陆地—海洋系统的复杂性,导致地球呈现洋流和季风有规律的运动。在不同纬度之间(特别是北半球)由于辐射的不均匀分配,导致在北极极地与中高纬度地区形成大尺度气压梯度,这种有规律的气压梯度变化,导致不同区域在大气环流作用下,水汽进行着有规律的运移。北极涛动( ArcticOscillation,AO)描述北半球海平面气压场的波动规律性变化(北极地区与周围环状地区气压存在负相关性),很好地揭示了环状气压场的时空变化特征,对北半球及区域气候研究具有重要的理论指导意义( Thompsonand Wallace,1998;龚道溢和王绍武,2003)。近年来的研究表明,北极涛动影响北半球中高纬度地区的气候时空特征,它不仅影响年内的气候变化,而且对年际(甚至年代际)气候变化均具有重要影响(琨建华等,2006 )。AO指数与地面温度(Thompson and Wallace,1998;Ghasemiand Khalili,2006)、降水和降水特征( Hu and Feng,2010; Mao et al.,2011)以及其综合影响,如干旱、洪涝(Wang et al.,2007; Wang et al.,2013)在区域/全球尺度的,已经取得了大量的研究成果。近几十年来AO向持续高位的趋势是北半球冬季变暖的重要原因( Thompson and Wallace,2001),有研究表明,20世纪70年代以来的全球变暖也可能与AO处于强西风位相有因果关系(王绍武,2001 ) 。
对于我国而言,针对不同地区AO与降水和气温的关系研究也不胜枚举( Gong and Wang,2003;Wang and Fang,2004;Mao et al.,2011;Zuoct al.,2015;覃郑婕等,2017;陈亚宁等,2017),但AO对干旱的影响方面的研究较少。何春( 2002)研究发现,北极涛动与我国北部季风区气温(特别是冬季气温)存在显著的正相关关系,龚道溢和王绍武( 2003)指出当AO指数偏强时,我国大部分地区冬季气温偏高,同时降水也偏多。司东等( 2016)对2015—2016年极端气候事件进行分析,发现极端严寒事件的发生与AO指数的异常有关。因此AO异常变化是我国极端气候事件暴发(特别是中高纬度地区)的重要诱因之一。
1.2.3.2旱涝与太平洋年代际振荡( PDO)关系研究
太平洋年代际振荡〔( Pacific ( inter ) Decadal Oscillation.简称PDO)1最早由Mantua等( 1997)提出,PDO是年际甚至年代际尺度的气候变化信号(Mantua et al.,1997),具有增强气候变化敏感信号的优势。PDO可用于辨析和识别气候变化的敏感性,尤其对太平洋及其周边地区(包含本研究区)气候的影响明显(杨修群等,2004 ) ;1976—1977年北半球地区突现显著的年代际异常现象( Miller et al.,1994),导致PDO的冷暖位急转,对气候系统的年际变率的异常具有重要的调节作用。PDO主要影响北半球中高维度地区(以北太平洋和北美地区为主),次要影响地区是北半球低纬度地区(热带太平洋)( Latif,1996;朱益民和杨修群,2003; Yang andZhang,2003),对PDO敏感区域的气候特征、水文特性、生态系统敏感性以及渔业生产的影响进行系统性分析( Mantua et al.,1997;Benson et al.,2003 )。已有大量的研究证实,在年代际尺度(长时间尺度)以及较短的时间尺度(年际尺度),PDO信号均会对气候变化产生重要的影响,这种大尺度气候因子的影响与ENSO之间存在相应性反馈,在年际尺度上PDO的变化极有可能影响ENSO发生的时间、频次以及强度(张瑞等,2011 )。
太平洋年代际振荡与中国不同区域气候年代际变化之间的关系,近年来已成为水文气象学家关注的热点问题。王绍武等( 1979)利用百年尺度旱涝观测及反演资料,明晰了海气(海陆)反馈与响应的36年周期变化机制。于淑秋等(1997)采用经典的滑动T检验法(双边,置信度为P<0.05 )对北太平洋海温年代际突变点进行了系统性分析,研究发现在1976—1977年间海温存在突然的上升,从而诱发我国部分地区汛期降水量的减少,这种降水的异常减少在东北地区尤为明显,与此同时华北地区降水偏多,随着海温突变后进入稳定期,降水盈亏的空间格局反转。黄荣辉等((1999 )则强调,中国夏季降水的年代际变化(70—80—90形成少-一-多—少的年代际变化)主要是由于20世纪60年代至20世纪90年代初赤道中、东太平洋海表温度明显增加引起,同时20世纪70年代海温明显降低所造成。Chang等( 2000a,2000b)研究了汛期PDO对我国长江中下游地区和华南地区降水量的影响,发现PDO冷暖位相中这两个区域夏季雨量与太平洋海温之间存在6个月左右的滞后性。朱益民等( 2003)研究了PDO变化对中国气候变率的影响,指出PDO对ENSO信号在中国夏季气候异常时具有缓冲的调制作用。
1.2.3.3旱涝与厄尔尼诺( El Nino)关系研究
厄尔尼诺(El Nino)现象是热带海表温度最强的年际异常信号,是不同海洋温度与水汽运输相互作用的结果(李丽平等,2015 ),已有研究发现全球变暖导致极端El Nino事件频率增加( Cai et al.,2014)。E1 Nino的出现对热带地区的气候带来急剧的变化(如南半球的暴雨异常以及印度洋沿岸干早等),而且也给广大中高纬地区乃至全球的天气异常都带来显著的影响(张先恭和赵汉光,1988 )。
厄尔尼诺对气候变化的影响研究由来已久,诸多学者针对El Nino现象与我国不同地区的气候异常的关系进行研究,已有研究表明El Nino事件发生后次年的夏季,我国不同地区均表现出干湿异常,我国东部季风区(特别是长江流域、江南北部)均出现降水偏多,北疆地区、黄河流域和海河流域也出现一个多雨中心,长江中下游地区容易发生洪涝,而江淮流域降水偏少(刘颖和倪允琪,1998;金祖辉和陶诗言,1999;黄荣辉等,2003;赵亮等,2006;宗海锋等,2008)。此外,针对E1 Nino事件对我国东部降水乃至全国的降水都产生至关重要的影响(林学椿,1993;秦坚肇,2014;顾薇,2016;翟盘茂等,2016)。李丽平等( 2015)研究发现,对于我国东部地区而言,无论逐月或季节降水,Nino3、Nino4、Nino3.4型均表现为正向的影响与反馈,其中Nino4型的降水正向影响—反馈的程度最强、Nino3.4型最弱。
1.2.4 东北地区干旱研究现状
虽然过去从整体上分析中国干旱特征的工作已经有过不少(黄嘉佑,
1991 ;章名立,1993;于星,2001;土央等,2000;工迎,l20016).祥,2007;姚玉璧等,2013;Zhang et al.,2014;Zhang et al.,2016 ) ,
针对某一区域旱涝的研究也有所开展(李崇银,1992;黄嘉佑等,1996;
李栋梁等,1997;孙力等,2000;谢安等,205; 社机国在业地区的干蓓等,2014;齐文栋,2014),但相比之下,详细探讨中国东北地区的干
旱演变规律的研究并不是很多。许多学者对我国不同地区进行干旱风险评价,结果表明,东北地区为我国干旱高风险区,也是气候变暖最为敏感区之一(陈育峰,1995;朱琳,2002;王素艳,2003; Yin et al.,2014)。
在东北地区干旱变化特征分析中,目前国内外常采用SPI ( Wang ctal.,2014; Yu et al.,2014; Wang et al.,2015) , SPEI(高蓓等,2014;孙滨峰等,2015;李明等,2016;梁丰等,2017;沈国强等,2017a ;
2017b;蔡思扬等,2017) ,PDSI(学晓辉等,z(FWDI)(董秋婷土壤湿度( Cong et al.,2017)、作物水分亏缺指数( CWDI)(董秋婷
等,2011;张淑杰等,2013;解文娟等,2014;)等干旱指标,对东北地区干旱时空变化特征和发展趋势进行研究,得到了许多有意义的成果。除采用干旱指标外,也有一些探讨只是集中在对该地区降水和气温异常时空分布规律的分析上,如在孙力等( 2003)利用东北地区多台站、长时间
序列、高质量气象观测数据分析了东北地区地衣个—热z的其础上,运用姜晓艳等(2008,2009)在分析主要观测站百年气温变率的基础上,运用
小波转换在周期分析中的优势构建了适用于东北地区的多时间尺度小波分析方法,分别对气温和降水进行周期分析。此外,魏风英和张婷( 2009 )运用游程理论对东北地区的干旱强度、频率等重要统计特征进行综合性分析,并自下而上深人探究了干旱与大气环流之间的可能联系。
在干旱指标的选择和时间尺度选取方面,徐一丹等( 2017)利用多指标体系,分析近55年东北地区多时间尺度干旱变化特征及指标体系之间的表征差异,结果显示SPI描述东北地区无旱及特旱发生频率时较SPEI高,中旱、重旱及湿润发生频率则相反,在评估东北地区旱涝情况时SPEI指数较SPI指数适用性更好。蔡思扬等( 2017)计算不同时间尺度下的SPEI,将所得结果与实际干旱成灾面积进行对比分析,结果表明SPEI在东北地区干旱评估中具有较好的适用性。王亚许等(2016)针对SPI、SPEI( Thornthwaite ) . PDSI ( Thornthwaitc ) 、降雨Z指数、降雨距平百分率和综合气象干旱指数(CI) 6种典型的气象干旱指标,通过各指标在东北地区的季节干旱识别的结果与历史干旱资料进行对比,进行不同地区、不同季节的指标适用性分析,但在此研究中并没有涉及FAO-Penman-Monteith计算蒸散发算法。也有学者利用不同时间尺度( 1个月、3个月、6个月、12个月和24个月)上的SPI对东北地区干旱程度进行分析,并对各时间尺度的结果进行了比较(卢洪健等,2015;梁丰等,2017)。李明等( 2016)利用多时间尺度的SPEI对东北地区的干旱特征和潜在的干旱风险进行了评估。目前,针对全国不同干旱指数多时间尺度的研究指出3个月的时间尺度与实际旱情(以土壤湿度进行验证)最为吻合( Mishra and Singh,2010; Xu etal.,2015b ),但针对东北地区干旱研究的最优时间尺度分析较少。
大量研究表明,东北地区的干旱趋势也存在争议。随着全球变暖影响的加剧,东北地区朝干旱化和极端化的方向发展,特别是20世纪90年代中期以后,随着气温的显著升高,这种干旱化发展增率尤为明显(谢安等,2003;马柱国等,2006;陈晓华,2009;陈莉等,2010; Yu et al.,2014;卢洪健等,2015),统计表明,在全球平均温度上升1℃的大背景下,我国东北地区干旱化变率呈指数式(非线性)增加,其干旱化程度增加了5% ~20%,最大达到22%(谢安等,2003)。与此同时,王亚平等( 2008)也认为,在1980—2005年期间由于降水量呈现增加趋势,东北大部分地区的干旱状况有所缓解,“全球变暖”与“降水增加”之间达到对冲平衡。
东北地区的降水、气温等气候要素由于受大气环流的影响,势必会影响东北地区干旱的年际/年代际变化,但影响东北地区干旱的大气环流因素复杂。当低纬度季风不能将大气中的有效水汽运移至高纬度地区时(季风暴发时间较晚),东北北部发生干旱的风险明显增加(杨林等,2007 )。
面雨)也是东北地区诱发干旱的原因之一(孙力等,2002)。极端天气气候事件发生的概率和强度显著增加是当前我们面临的重要问题( IPCC,
气候事件的研究引起越来越多学者的关注,不少学者已对全国范围的极端气候事件进行了系统性的分析研究(钱维宏等,2007;翟盘茂等,1999;
蔡敏等,2007),但针对东北地区的极端气候事件的研究并不多见。
在气候变化的背景下,干旱已成为影响我国粮食作物产量的重要因素(纪瑞鹏等,2012;Guo et al.,2017)。董秋婷等(2011)、张淑杰等(2013 )、蔡菁菁等( 2013)、解文娟等(2014)利用作物水分亏缺指数( cwDI) ,对东北地区旱情的变化特征以及未来趋势进行分析,干旱发生频率、程度以及影响范围均呈增高趋势,特别是玉米灌浆期,干旱的频
发对玉米生产已产生诸多不利影响。在东北地区的研究中,十乒皇东北高西南逐渐增加的变化趋势,其中以辽宁大部至黑龙江西南部发生频率较隔(张淑杰等,2013)。干旱对社会经济带来的影响是复杂而多方面的,除
对农业生产带来的直接影响外,由于缺水导致的地表水利用量和地下水抽取量增大,加大了水资源短缺风险。Dong等(2011)对中国东北松嫩平原
春季干旱对固碳以及蒸散和用水效率的影响进行了分析,Zheng等(2015)基于累积标准化降水指数( SPI )和归一化植被指数(NDVl)评估了东北地区夏季不同阶段( 6月、7月和8月)干旱对植物生长高度的影响,研究证
实,干旱作为植被生态系统生产力的重要因素,对于植被和生态环境的影响也是不可忽视的。
1.2.5亟待解决的关键科学问题
1.2.5.1干旱指标和时间尺度的选取方面
东北地区作为我国重要的粮食生产基地,干旱对于东北地区的粮食生产和经济发展具有重要的影响。目前针对不同干旱指标多时间尺度的研究已在全国范围内有所开展,但干旱成因复杂,我国干旱特征空间差异较大,对于我国不同地区的干旱指标选取不能一刀切。
在已有研究中,单一气候因子的干旱指标(降水Z指数、降水距平、SPI等)因其具有统计学意义,便于定量化分析其干旱等级,对数据要求不高而受到广泛应用。但干旱的成因复杂,除降水外,气温、风速、辐射、日照时数、水汽压等气候因子都会对旱涝带来影响,在气候变化条件下,仅考虑降水将忽略全球变暖以及其他气候因素变化带来的影响。因此,在东北地区的干旱研究中,需要综合分析气候条件变化并纳入干旱分析中。1.2.5.2干旱指标的适用性和可靠性验证
现有研究对不同蒸散发算法和多种时间尺度的气象干旱指标在表征农业旱情(土壤湿度)的适用性和可靠性验证尚且薄弱,主要是对干旱指标与土壤湿度的相关性进行分析,需要更为细致深人地从波动一致性、趋势一致性和预报准确率多方面综合探讨。
1.2.5.3 极端干早事件研究方面
在年代际尺度上,极端干旱事件的发生与气候变化之间存在必然的因果关系,其中不少学者对大区域、全球范围的极端干旱事件进行了分析研究,但针对东北地区的极端干旱事件研究较少,特别是针对极端干旱事件的发展和消退过程的研究比较缺乏。
1.2.5.4干早与大气环流的响应方面
大气环流是影响东北地区水汽输送的重要因素,在以往的研究中,多针对单一气候因子单一季节分析大气环流对东北气候变化的影响,从多因子综合探讨不同季节大气环流对东北干旱的影响并不多见。
1.3 研究内容及框架
1.3.1研究内容
1.3.1.1东北地区气候变化特征分析
选取1960—2013年主要气象要素(降水、气温、风速、日照时数、相对湿度)和蒸发能力,针对单个气候要素进行计算分析,并对各气候要素的变化趋势深入探讨;利用基尼系数的方法,对东北地区降水的均一性进行分析;在此基础上,针对降水和气温在影响干旱的气候要素中的重要性,利用Copula理论和方法,构建降水与气温的联合分布函数,试图解释气候变化背景下,极端降水与气温之间的内在响应关系并获取东北干旱的重现期。
1.3.1.2东北地区干旱指标选取与验证
选取多时间尺度的SPEI作为干旱指标,针对东北地区作物生长季(每年5—9月),基于土壤湿度(CCI土壤湿度数据产品),利用相关系数法和ROC曲线的正确率算法,来验证不同蒸散发算法多时间尺度(1~12个月)的SPEI在农业干旱分析中的适用性和可靠性,包括波动一致性、趋势一致性和预报准确率分析。
1.3.1.3 东北地区干旱时空变化特征分析
主要从干早周期、干旱强度、干旱发展—消退速率以及干旱时空分解等方面展开东北地区干旱时空演变特征分析。
运用Morlet小波分析的方法对干旱周期进行探讨;基于游程理论识别干旱事件并对干旱强度特征进行分析;提出干旱发展—消退速率的概念并建立其定量评估方法,针对极端干旱事件的变化过程进行深人剖析;对东北地区干旱进行经验正交( EOF)分解,进一步反映东北地区干旱时空变化特点。
1.3.1.4东北干旱与大气环流的相关关系分析
在东北地区基本气候特征和干旱变化特征分析基础上,探究北极涛动(Ao)、太平洋年代际振荡( PDO)、厄尔尼诺(El Nino)与东北干旱的同期和滞后相关关系,并对不同季节不同区域的主相关因子进行比较;从影响干早的主要气候要素降水和气温两个方面出发,进一步揭示大气环流对东北干旱的影响机制;针对极端干旱事件的发展—消退速率,从年代际尺度分析大气环流对极端干旱事件过程的关系,旨在揭示东北地区旱涝变化的机理。
1.3.2技术路线
技术路线如图1-1所示
2研究区概况与数据来源