小波分析的预备知识

本文介绍了内积在欧几里得空间和复数空间中的定义,探讨了Hilbert空间的几何性质,特别是如何推广到信号处理中的无限维函数空间,如L^2([a,b]),强调了内积的非负性、共轭对称性和完备性在理论和应用中的关键作用。
摘要由CSDN通过智能技术生成

本章提供了学习傅里叶分析和小波分析的基础知识, 主要包括Hilbert 空间几何学以
及极限与积分换序的条件. 希尔伯特空间中的许多概念和线性代数中的一些概念有类似
之处, 读者可以进行比照以加深理解.

1.1 内积空间

在欧几里得空间\mathbb{R}^3上,两个向量\mathbf{x} = (x_1, x_2, x_3)\mathbf{y} = (y_1, y_2, y_3)的标准内积(也称为点积或数量积)可以定义为:

\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + x_2 y_2 + x_3 y_3

这是欧几里得空间中最常见的内积定义,它基于向量的分量之间的乘积之和。

这种内积的定义与欧几里得空间中的向量长度度量相关联。根据勾股定理,向量的长度(或称为模)可以通过其各分量的平方和再开平方来计算。而这个平方和的部分正是内积的定义所涉及的。

具体来说,对于\mathbb{R}^3中的向量\mathbf{x} = (x_1, x_2, x_3),其长度\|\mathbf{x}\|定义为:

\|\mathbf{x}\| = \sqrt{x_1^2 + x_2^2 + x_3^2}

这个定义与我们之前提到的内积定义是一致的。内积定义中的每一项x_i y_i实际上是向量各分量的乘积,因此与向量的长度度量是密切相关的。

在复数空间\mathbb{C}^3中,即三维复向量空间中,内积可以类似地定义为:

\langle \mathbf{x}, \mathbf{y} \rangle = x_1 \overline{y_1} + x_2 \overline{y_2} + x_3 \overline{y_3}

其中\overline{y_i}表示y_i的共轭复数。

这个定义的内积保留了欧几里得空间的内积的基本性质,但在处理复向量时,它考虑了复数的共轭关系。这样的定义在量子力学等领域中经常会遇到,因为复数和复向量在这些领域中具有重要的意义。

共轭的引入确保了复向量的长度是实的且非负的,这与实数向量的长度的性质是一致的。在实数空间 \mathbb{R}^n和复数空间\mathbb{C}^n中,内积的定义和长度(模)的计算都可以通过相应的内积定义来实现,保证了向量空间的性质和度量的一致性。

这种定义的内积和长度对于许多数学和物理问题都是非常重要的,因为它们提供了一种通用的框架,可以用来描述向量空间中的向量之间的关系,并且可以推广到更高维度的情况。

本章的目的是将内积的概念推广到更一般的集合上,这个集合可以是相当广泛的线性空间。在这个推广中,特别感兴趣的是信号,也就是时间的函数,在线性空间上的内积。这种推广可以让我们在更抽象和广泛的背景下考虑内积的概念,并将其应用于更多的情况,包括信号处理、波形分析等领域。

在信号处理中,内积可以用来衡量信号之间的相似度或相关性,或者用来定义信号空间中的正交基。这对于许多应用非常重要,包括通信、图像处理、音频处理等领域。因此,推广内积的概念以涵盖信号空间是非常有意义的。

根据你提供的定义,一个复线性空间 \( V \) 上的内积被称为满足以下条件:

1. 非负性:对于任意 \( u, v \in V \),内积 \( \langle v, v \rangle \) 是非负的,并且只有当 \( v = 0 \) 时等于零。
2. 共轭对称性:对于任意 \( u, w \in V \),内积 \( \langle u, w \rangle \) 等于其共轭 \( \langle w, u \rangle \)。
3. 齐次性:对于任意 \( v \in V \) 和任意复数 \( c \in \mathbb{C} \),内积满足 \( \langle cv, w \rangle = c \langle v, w \rangle \)。
4. 可加性:对于任意 \( u, v, w \in V \),内积满足 \( \langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle \)。

如果一个线性空间满足这些性质,那么它被称为一个内积空间。

另外,由这些性质还可以得到以下推论:

1. 双线性性:内积在两个参数上是线性的,即对于任意 \( u, v, w \in V \) 和任意复数 \( c, d \in \mathbb{C} \),有
   \[ \langle cu + dv, w \rangle = c \langle u, w \rangle + d \langle v, w \rangle \] 
   和
   \[ \langle u, cw + dw \rangle = c \langle u, w \rangle + d \langle u, w \rangle \]。

2. 共轭齐次性:对于任意 \( v, w \in V \) 和任意复数 \( c \in \mathbb{C} \),有
   \[ \langle v, cw \rangle = \overline{c} \langle v, w \rangle \]。

在 \( n \) 维复线性空间 \( \mathbb{C}^n \) 中,我们可以定义如下的内积:

\[ \langle v, w \rangle = \sum_{i=1}^{n} v_i \overline{w_i} \]

其中,\( v = (v_1, v_2, \ldots, v_n) \) 和 \( w = (w_1, w_2, \ldots, w_n) \) 是 \( \mathbb{C}^n \) 中的向量。

这个定义满足内积的所有条件:
1. 非负性:对于任意 \( v \in \mathbb{C}^n \),\( \langle v, v \rangle \) 是非负的,且只有当 \( v = 0 \) 时等于零。
2. 共轭对称性:\( \langle v, w \rangle = \sum_{i=1}^{n} v_i \overline{w_i} = \overline{\sum_{i=1}^{n} w_i \overline{v_i}} = \overline{\langle w, v \rangle} \)。
3. 齐次性:对于任意复数 \( c \),\( \langle cv, w \rangle = \sum_{i=1}^{n} cv_i \overline{w_i} = c \sum_{i=1}^{n} v_i \overline{w_i} = c \langle v, w \rangle \)。
4. 可加性:\( \langle u + v, w \rangle = \sum_{i=1}^{n} (u_i + v_i) \overline{w_i} = \sum_{i=1}^{n} u_i \overline{w_i} + \sum_{i=1}^{n} v_i \overline{w_i} = \langle u, w \rangle + \langle v, w \rangle \)。

因此,\( \mathbb{C}^n \) 成为一个内积空间。这是一个非常经典的内积空间,常用于描述复数向量的性质和相互关系。

在 \( n \) 维实线性空间 \( \mathbb{R}^n \) 中,我们可以定义如下的内积:

\[ \langle v, w \rangle = \sum_{i=1}^{n} v_i w_i \]

其中,\( v = (v_1, v_2, \ldots, v_n) \) 和 \( w = (w_1, w_2, \ldots, w_n) \) 是 \( \mathbb{R}^n \) 中的向量。

这个定义满足内积的所有条件:
1. 非负性:对于任意 \( v \in \mathbb{R}^n \),\( \langle v, v \rangle \) 是非负的,且只有当 \( v = 0 \) 时等于零。
2. 对称性:\( \langle v, w \rangle = \sum_{i=1}^{n} v_i w_i = \sum_{i=1}^{n} w_i v_i = \langle w, v \rangle \)。
3. 齐次性:对于任意实数 \( c \),\( \langle cv, w \rangle = \sum_{i=1}^{n} cv_i w_i = c \sum_{i=1}^{n} v_i w_i = c \langle v, w \rangle \)。
4. 可加性:\( \langle u + v, w \rangle = \sum_{i=1}^{n} (u_i + v_i) w_i = \sum_{i=1}^{n} u_i w_i + \sum_{i=1}^{n} v_i w_i = \langle u, w \rangle + \langle v, w \rangle \)。

因此,\( \mathbb{R}^n \) 成为一个内积空间。这是一个非常经典的内积空间,常用于描述实数向量的性质和相互关系。

在 \( \mathbb{C}^2 \) 中,我们可以定义如下的内积:

\[ \langle v, w \rangle = v^\dagger A w \]

其中,\( v = (v_1, v_2) \) 和 \( w = (w_1, w_2) \) 是 \( \mathbb{C}^2 \) 中的向量,\( A \) 是一个正定的 Hermite 矩阵,\( v^\dagger \) 表示向量 \( v \) 的共轭转置。

这个定义满足内积的所有条件:
1. 非负性:对于任意 \( v \in \mathbb{C}^2 \),\( \langle v, v \rangle = v^\dagger A v \) 是非负的,且只有当 \( v = 0 \) 时等于零。
2. 共轭对称性:\( \langle v, w \rangle = v^\dagger A w = (v^\dagger A w)^\dagger = w^\dagger A^\dagger v = \overline{\langle w, v \rangle} \)。
3. 齐次性:对于任意复数 \( c \),\( \langle cv, w \rangle = (cv)^\dagger A w = c v^\dagger A w = c \langle v, w \rangle \)。
4. 可加性:\( \langle u + v, w \rangle = (u + v)^\dagger A w = u^\dagger A w + v^\dagger A w = \langle u, w \rangle + \langle v, w \rangle \)。

因此,\( \mathbb{C}^2 \) 成为一个内积空间。

更一般地,对于 \( n \) 维复线性空间 \( \mathbb{C}^n \),我们可以定义类似的内积,其中内积矩阵 \( A \) 是一个正定的 Hermite 矩阵。这种定义的内积空间不仅局限于二维情况,而是适用于任意维度的复线性空间。

内积空间是比线性赋范空间更为特殊的一类空间,因为内积可以自然诱导出范数,进一步地,又可以由范数诱导出距离或者度量。这种结构在数学和物理学中具有重要的应用和意义。

在内积空间中,我们可以定义一个与内积有关的范数,称为诱导范数。诱导范数可以通过内积自然地诱导出来,它定义为:

\[ \|v\| = \sqrt{\langle v, v \rangle} \]

根据诱导范数,我们可以引入内积空间中任意两个元素 \( v \) 和 \( w \) 之间的距离,通常可以使用诱导范数定义距离:

\[ d(v, w) = \|v - w\| \]

在内积空间 \( V \) 中,如果存在一个点列 \( \{v_k\}_{k=1}^{\infty} \) 且 \( v \in V \),使得当 \( k \to \infty \) 时,\( \|v_k - v\| \to 0 \),则称点列 \( \{v_k\}_{k=1}^{\infty} \) (依范数 \( \|\cdot\| \))收敛于 \( v \),记为 \( v_k \to v \),\( k \to \infty \)。如果对于任意 \( \epsilon > 0 \),存在一个正整数 \( N \),使得当 \( m, n > N \) 时,有 \( \|v_m - v_n\| < \epsilon \),则称点列 \( \{v_k\}_{k=1}^{\infty} \) 是内积空间 \( V \) 中的 Cauchy 点列。

如果内积空间 \( V \) 中的每一个 Cauchy 点列都是收敛点列,则称 \( V \) 是完备的。完备的内积空间称为 Hilbert 空间。Hilbert 空间具有很多重要的性质,包括极限的存在性,这使得在 Hilbert 空间中研究分析问题更加方便和准确。

相比之下,有理数域 \( \mathbb{Q} \) 中的柯西列不一定收敛于 \( \mathbb{Q} \) 中的元素,这说明有理数域中存在“孔洞”,这样的空间在分析问题时会带来不便。而完备性可以保证内积空间不存在这样的问题,这是 Hilbert 空间的一个重要性质。




 

1.2 无限维Hilbert 空间

在讨论无限维 Hilbert 空间之前,先来考虑一个信号的例子。信号通常可以表示为函数 \( f(t) \),其中 \( t \) 表示时间,\( f(t) \) 表示在时间 \( t \) 时刻的信号密度。通常,时间 \( t \) 可以在区间 \([a, b]\) 上变化,表示信号的持续时间。这里 \( a \) 可能是负无穷,\( b \) 可能是正无穷。

在信号处理中,我们通常将这样的信号视为一个函数空间中的元素。而在这个函数空间中,我们可以定义内积和范数,从而得到一个内积空间。这种内积空间通常是 Hilbert 空间的一个例子。

然而,与有限维空间不同,这些函数空间通常是无限维的。这意味着这些空间中的向量可以有无限多个分量,例如,我们可以将一个信号看作是一个在整个时间区间上的函数,这是一个无限维的向量。

无限维 Hilbert 空间在分析信号和波形时特别有用,因为它们允许我们更精确地描述和分析连续的信号和波形。在这样的空间中,我们可以定义诱导的范数,引入内积,进而定义距离和度量,从而使得我们能够更加准确地处理信号处理和分析问题。

在定义 1.4 中,\( L^2([a, b]) \) 表示定义在区间 \([a, b]\) 上所有平方可积函数的集合。换句话说,\( L^2([a, b]) \) 是由满足以下条件的函数组成的集合:

1. 函数 \( f(t) \) 在区间 \([a, b]\) 上有定义;
2. 函数 \( f(t) \) 在区间 \([a, b]\) 上的平方可积,即积分 \( \int_{a}^{b} |f(t)|^2 dt \) 是有限的。

容易证明 \( L^2([a, b]) \) 具有以下性质:

1. \( L^2([a, b]) \) 是复数域 \( \mathbb{C} \) 上的一个线性空间。
2. \( L^2([a, b]) \) 是无限维的线性空间。例如,\( 1, t, t^2, t^3, \ldots \) 是 \( L^2([0, 1]) \) 中的线性无关组。

在 \( L^2([a, b]) \) 中可以定义如下的内积:对于任意 \( f, g \in L^2([a, b]) \),内积定义为

\[ \langle f, g \rangle = \int_{a}^{b} f(t) \overline{g(t)} dt \]

其中 \( \overline{g(t)} \) 表示函数 \( g(t) \) 的复共轭。这个定义满足内积的所有性质,因此 \( L^2([a, b]) \) 构成一个 Hilbert 空间。

注 1.5 提到 \( L^2([a, b]) \) 空间不仅包含连续函数,还包含不连续的函数。本讲义中的例子通常是连续的或者在有限个间断点不连续的函数。在这种情况下,对积分的理解可以使用基本的 Riemann 积分。

然而,实际上 \( L^2 \) 空间的定义可以包含具有无穷个间断点的函数,此时必须使用 Lebesgue 积分。这种情况下,对于函数的积分要使用更广义的 Lebesgue 积分来定义。这是因为 Lebesgue 积分能够更好地处理具有无穷间断点的函数,并且可以更准确地描述函数的积分值。

从物理意义上来说,\( L^2([a, b]) \) 空间中的函数表示的信号的总能量是有限的。大部分实际应用中的信号通常满足这一条件。

关于 \( L^2([a, b]) \) 完备性的证明可以在泛函分析的教材中找到更详细的讨论。

确实,内积的非负性是 \( L^2 \) 空间中定义内积的一个重要性质。要证明这一点,需要借助如下结论:

\[ \int_a^b |f(t)|^2 dt \geq 0 \]

这个结论的意义在于,函数 \( f(t) \) 的平方在区间 \([a, b]\) 上的积分是非负的。这是因为平方函数始终非负,因此对于任何 \( t \),\( |f(t)|^2 \geq 0 \),所以在整个区间上的积分也必定非负。

因此,根据内积的定义:

\[ \langle f, f \rangle = \int_a^b f(t) \overline{f(t)} dt = \int_a^b |f(t)|^2 dt \geq 0 \]

这表明了 \( L^2 \) 空间中所定义内积的非负性条件得到了满足。

1.3 正交与正交投影

1.4 线性算子及其伴随算子

1.5 极限与积分交换顺序

  • 17
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

___Y1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值