SLAM学习日记(2)

内容来源



http://t.csdn.cn/giW6H
   从零开始搭二维激光SLAM --- 使用单线雷达实现LIO-SAM中的特征点提取

将对LIO-SAM中特征点提取的部分进行二维激光雷达下的实现。

先补充一点LIO-SAM的特征提取知识

特征点提取一共分为如下三步:

对激光点按线束分类

按照激光雷达的线束模型,每一个线束称为一个scan,一帧线束组成一帧sweep,首先我们需要计算每个激光在激光雷

计算激光点曲率
曲率的计算公式如下:
 

 

为了使得在一周360度上有均匀的约束,,我们将一条激光线平均分为6块, 将块内的点按曲率大小排列,将曲率最大的2个点作为corner sharp点,曲率最大的前20个点作为corner less sharp点,曲率最小的4个点作为surf flat点,除上述三种类型外的其余的点以及surf flat点作为surf less flat点,surf less flat点相对会较多,因此最后还会对surf less flat点进行一次下采样,那么为什么要分为这四类点呢?

原因是在前后帧进行匹配时,当前帧的corner shape点会与前一帧的corner less shape点进行匹配,而surf flat点会与surf less flat点进行匹配,将曲率最大的点与曲率相对大的点进行匹配可以增加匹配成功概率。
 

进入代码部分
 

#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h>
#include <map>
#include <vector>
#include <chrono>
#define max_scan_count 1500 // 雷达数据个数的最大值

struct smoothness_t
{
    float value;
    size_t index;
};

// 排序的规则,从小到大进行排序
struct by_value
{
    bool operator()(smoothness_t const &left, smoothness_t const &right)
    {
        return left.value < right.value;
    }
};

// 声明一个类
class LaserScan
{
private:
    ros::NodeHandle node_handle_;           // ros中的句柄
    ros::NodeHandle private_node_;          // ros中的私有句柄
    ros::Subscriber laser_scan_subscriber_; // 声明一个Subscriber
    ros::Publisher feature_scan_publisher_; // 声明一个Publisher
    float edge_threshold_; // 提取角点的阈值

public:
    LaserScan();
    ~LaserScan();
    void ScanCallback(const sensor_msgs::LaserScan::ConstPtr &scan_msg);
};

// 构造函数
LaserScan::LaserScan() : private_node_("~")
{
    // \033[1;32m,\033[0m 终端显示成绿色
    ROS_INFO_STREAM("\033[1;32m----> Feature Extraction Started.\033[0m");

    // 将雷达的回调函数与订阅的topic进行绑定
    laser_scan_subscriber_ = node_handle_.subscribe("laser_scan", 1, &LaserScan::ScanCallback, this);
    // 将提取后的点发布到 feature_scan 这个topic
    feature_scan_publisher_ = node_handle_.advertise<sensor_msgs::LaserScan>("feature_scan", 1, this);

    // 将提取角点的阈值设置为1.0
    edge_threshold_ = 2.0;
}

LaserScan::~LaserScan()
{
}

// 回调函数
void LaserScan::ScanCallback(const sensor_msgs::LaserScan::ConstPtr &scan_msg)
{
    std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();

    std::vector<smoothness_t> scan_smoothness_(max_scan_count); // 存储每个点的曲率与索引
    float *scan_curvature_ = new float[max_scan_count];         // 存储每个点的曲率

    std::map<int, int> map_index;   // 有效点的索引 对应的 scan实际的索引
    int count = 0;                  // 有效点的索引
    float new_scan[max_scan_count]; // 存储scan数据的距离值

    // 通过ranges中数据的个数进行雷达数据的遍历
    int scan_count = scan_msg->ranges.size();
    // ROS_INFO_STREAM("scan_count: " << scan_count);

    // 去处inf或者nan点,保存有效点
    for (int i = 0; i < scan_count; i++)
    {
        if (!std::isfinite(scan_msg->ranges[i]))
        {
            // std::cout << " " << i << " " << scan_msg->ranges[i];
            continue;
        }

        // 这点在原始数据中的索引为i,在new_scan中的索引为count
        map_index[count] = i;
        // new_scan中保存了有效点的距离值
        new_scan[count] = scan_msg->ranges[i];
        count++;
    }

    // std::cout << "count: " << count << std::endl;

    // 计算曲率值, 通过当前点前后5个点距离值的偏差程度来代表曲率
    // 如果是球面, 则当前点周围的10个点的距离之和 减去 当前点距离的10倍 应该等于0
    for (int i = 5; i < count - 5; i++)
    {
        float diff_range = new_scan[i - 5] + new_scan[i - 4] +
                           new_scan[i - 3] + new_scan[i - 2] +
                           new_scan[i - 1] - new_scan[i] * 10 +
                           new_scan[i + 1] + new_scan[i + 2] +
                           new_scan[i + 3] + new_scan[i + 4] +
                           new_scan[i + 5];
        // diffX * diffX + diffY * diffY
        scan_curvature_[i] = diff_range * diff_range;
        scan_smoothness_[i].value = scan_curvature_[i];
        scan_smoothness_[i].index = i;
    }

    // 声明一个临时的sensor_msgs::LaserScan变量,用于存储特征提取后的scan数据,并发布出去,在rviz中进行显示
    sensor_msgs::LaserScan corner_scan;
    corner_scan.header = scan_msg->header;
    corner_scan.angle_min = scan_msg->angle_min;
    corner_scan.angle_max = scan_msg->angle_max;
    corner_scan.angle_increment = scan_msg->angle_increment;
    corner_scan.range_min = scan_msg->range_min;
    corner_scan.range_max = scan_msg->range_max;

    // 对float[] 进行初始化
    corner_scan.ranges.resize(max_scan_count);

    // 进行角点的提取,将完整的scan分成6部分,每部分提取20个角点
    for (int j = 0; j < 6; j++)
    {
        int start_index = (0 * (6 - j) + count * j) / 6;
        int end_index = (0 * (5 - j) + count * (j + 1)) / 6 - 1;
        // std::cout << "start_index: " << start_index << " end_index: " << end_index << std::endl;

        if (start_index >= end_index)
            continue;

        // 将这段点云按照曲率从小到大进行排序
        std::sort(scan_smoothness_.begin() + start_index,
                  scan_smoothness_.begin() + end_index, by_value());

        int largestPickedNum = 0;
        // 最后的点 的曲率最大,如果满足条件,就是角点
        for (int k = end_index; k >= start_index; k--)
        {
            int index = scan_smoothness_[k].index;
            if (scan_smoothness_[k].value > edge_threshold_)
            {
                // 每一段最多只取20个角点
                largestPickedNum++;
                if (largestPickedNum <= 20)
                {
                    corner_scan.ranges[map_index[index]] = scan_msg->ranges[map_index[index]];
                }
                else
                {
                    break;
                }
            }
        }
    }

    // 将提取后的scan数据发布出去
    feature_scan_publisher_.publish(corner_scan);

    std::chrono::steady_clock::time_point end_time = std::chrono::steady_clock::now();
    std::chrono::duration<double> time_used = std::chrono::duration_cast<std::chrono::duration<double>>(end_time - start_time);
    // std::cout<<"处理一次数据用时: "<< time_used.count() << " 秒。" << std::endl;
}

int main(int argc, char **argv)
{
    ros::init(argc, argv, "lesson1_feature_detection_node"); // 节点的名字
    LaserScan laser_scan;

    ros::spin(); // 程序执行到此处时开始进行等待,每次订阅的消息到来都会执行一次         ScanCallback()
    return 0;
}

原作者的备注已经很清楚了,代码中那个阈值2.0是我自己想修改看看效果的

 最开始的点云效果

进行特征点提取之后的点云的样子

你想学习 ORB-SLAM2,是一个基于特征点的稀疏直接法视觉 SLAM 系统。这个系统能够通过摄像头捕捉到的图像来构建三维地图并同时估计相机的运动轨迹。要学习 ORB-SLAM2,你可以按照以下步骤进行: 1. 了解 SLAM:首先,你需要了解什么是视觉 SLAM,包括它在机器人、增强现实和自动驾驶等领域中的应用。你可以阅读相关的论文或教材来掌握 SLAM 的基本概念。 2. 学习 ORB 特征点描述符:ORB-SLAM2 使用 ORB 特征点描述符来提取和匹配图像特征。你可以学习 ORB 特征点描述符的原理和实现方法,并了解特征点在 SLAM 中的作用。 3. 下载并阅读源代码:ORB-SLAM2 是开源的,你可以在其 GitHub 上找到代码和文档。下载代码后,阅读文档以了解系统的结构和使用方法。 4. 安装依赖库:ORB-SLAM2 使用了一些第三方库,如 OpenCV 和 Eigen。确保你已经正确安装和配置了这些库,并按照文档中的指导完成编译和配置。 5. 运行示例程序:ORB-SLAM2 附带了一些示例程序,你可以用它们来运行系统并观察其行为。首先,你可以尝试使用它们提供的演示数据集,以便更好地理解系统的工作原理。 6. 实践与调试:一旦你对系统有了基本的了解,你可以尝试将 ORB-SLAM2 应用到自己的数据集或实际场景中。在此过程中,你可能会遇到一些问题或 bug,需要进行调试和优化。 7. 学习进阶内容:一旦你熟悉了 ORB-SLAM2 的基本用法,你可以进一步学习其内部原理和算法细节。这将有助于你更好地理解系统,并能够针对特定需求进行定制和优化。 记住,学习 ORB-SLAM2 需要一定的数学和计算机视觉基础。如果你是初学者,建议先学习相关的数学和计算机视觉知识,然后再深入研究 ORB-SLAM2。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值