YOLOv9改进:独家HWD-ADown模块

博客介绍了YOLOv9的改进版HWD-ADown模块,这是一种利用Haar小波变换进行下采样的方法,旨在减少信息丢失并提升语义分割任务的性能。文章详细解释了模块的工作原理,并提供了在YOLOv9中集成HWD-ADown的步骤,包括修改源代码和训练过程。
摘要由CSDN通过智能技术生成

一、改进点介绍

HWD是一种下采样模型,应用了小波变换的方法。

 ADown是YOLOv9中的下采样模块,对不同的数据场景具有一定的可学习能力。

二、HWD-ADown模块详解

2.1 模块简介
HWD-ADown的主要思想:  使用HWD替换ADown中的Conv模块。

  应用Haar小波变换来降低特征图的空间分辨率,同时保留尽可能多的信息。

 论文地址:   https://www.sciencedirect.com/science/article/abs/pii/S0031320323005174

简介
        最大池化或跨步卷积等下采样操作在卷积神经网络(CNNs)中广泛使用,以聚合局部特征,扩大感受野,并最大限度地减少计算开销。然而,对于语义分割任务,在局部邻域上汇集特征可能会导致重要空间信息的丢失,这有利于像素预测。为了解决这个问题,我们引入了一种简单而有效

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值