一、改进点介绍
HWD是一种下采样模型,应用了小波变换的方法。
ADown是YOLOv9中的下采样模块,对不同的数据场景具有一定的可学习能力。
二、HWD-ADown模块详解
2.1 模块简介
HWD-ADown的主要思想: 使用HWD替换ADown中的Conv模块。
应用Haar小波变换来降低特征图的空间分辨率,同时保留尽可能多的信息。
论文地址: https://www.sciencedirect.com/science/article/abs/pii/S0031320323005174
简介
最大池化或跨步卷积等下采样操作在卷积神经网络(CNNs)中广泛使用,以聚合局部特征,扩大感受野,并最大限度地减少计算开销。然而,对于语义分割任务,在局部邻域上汇集特征可能会导致重要空间信息的丢失,这有利于像素预测。为了解决这个问题,我们引入了一种简单而有效