MPC模型预测控制与RL强化学习的差异性

模型预测控制(Model Predict Control,MPC)

模型预测控制与强化学习的差异性调研

概述

MPC 是一种使用数学模型在有限时间内实时优化控制系统的技术,自二十世纪六七十年代问世以来,已广泛应用于化学工程、炼油、先进制造、机器人和航空航天等各个领域。

杨立昆(Meta首席科学家)认为模型预测控制(MPC)比强化学习(RL)更加出色。他认为,强化学习这种方法需要大量的试验,非常低效。这和人类的学习方式大相径庭 —— 婴儿不是通过观察一百万个相同物体的样本来识别物体,或者尝试危险的东西并从中学习,而是通过观察、预测和与它们互动,即使没有监督。杨立昆还认为RL的一些概念是MPC一直长期在做的,只不过是RL赋予了新的名称

下面是杨立坤在社交平台上发布的观点

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

MPC Method

在这里插入图片描述

使用系统的数学模型来预测未来的行为,然后利用该知识来产生控制操作,以最大化某些性能目标。

  • 建立预测模型
  • 求解优化问题
  • 应用控制输入并更新

应用举例:

在这里插入图片描述

强化学习(RL) VS 模型预测控制(MPC)

特征强化学习(RL)模型预测控制(MPC)
Model系统模型不是必要的需要系统模型
Learning通过试错来学习用数学模型来预测
Speed慢,尤其是针对复杂问题快,尤其针对简单问题
Robustness敏感稳定
Sample efficiency样本效率低相较于RL样本效率更高
Applicability应用范围更加广阔已知或建模良好的场景

使用场景

  • 对于难以建模或具有复杂动态的问题,强化学习是合适的选择
  • 对于建模良好且动态可预测的问题,MPC 是一个不错的选择

MPC是一个规则的设定和建模,而RL主要去处理一些黑盒问题(LLM)

MPC(Model Predictive Control)和强化学习可以结合起来,以实现更好的控制策略。MPC是一种基于模型的控制方法,它通过在每个时间步骤上优化一个控制序列来实现最优控制。而强化学习是一种通过环境交互来学习最优策略的方法。 结合MPC强化学习的方法通常被称为强化学习中的模型预测控制(Model Predictive Control in Reinforcement Learning,简称MPC-RL)。在这种方法中,强化学习算法用于学习一个价值函数或策略函数,而MPC用于根据当前状态和学到的策略进行控制决策。 具体来说,MPC-RL的步骤如下: 1. 使用强化学习算法(如Q-learning、Policy Gradient等)在仿真环境中进行训练,以学习一个最优的策略函数或价值函数。 2. 在实际控制过程中,根据当前状态使用MPC方法进行控制决策。MPC会基于当前状态和学到的策略函数,通过优化一个控制序列来选择最优的动作。 3. 执行选择的动作,并观察环境反馈的下一个状态和奖励。 4. 根据观测到的状态和奖励,更新强化学习算法中的价值函数或策略函数。 5. 重复步骤2-4,不断迭代优化控制策略。 这种结合MPC强化学习的方法可以在实际控制任务中获得更好的性能和适应性。MPC提供了对系统动力学的建模和优化能力,而强化学习则可以通过环境交互来学习最优策略。它们的结合可以充分利用两种方法的优势,实现更好的控制效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EEE1even

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值