案例分享——蛋白蛋白对接揭示Serpina3c与凝血酶之间的作用机制

原创 普美瑞生物科技 普美瑞生物 2024年11月27日 09:45 江苏

   

背景介绍  

动脉粥样硬化(Atherosclerosis)是一种常见的血管炎症性病变,是多种心血管疾病的根本病理基础,如高血压、心肌梗死、中风和外周动脉疾病。已有研究表明,血管平滑肌细胞(VSMC)的功能异常与动脉粥样硬化的发生和进展密切相关,而凝血酶(thrombin)通过促进VSMC的迁移和增殖,在动脉粥样硬化中发挥着重要作用。丝氨酸蛋白酶抑制剂(Serpins)是血浆中一个复杂且广泛分布的蛋白超家族,其中一些Serpins通过抑制凝血酶,参与血液凝固、纤维蛋白溶解和炎症等关键生理过程。然而,Serpins在动脉粥样硬化中的具体作用尚未得到充分阐明。

研究简述   

东南大学医学院附属中大医院心内科团队以鼠源Serpina3c和凝血酶(thrombin)为研究对象,采用实验研究与蛋白-蛋白对接技术相结合,探讨了Serpina3c与凝血酶的相互作用机制,并深入分析了Serpina3c在动脉粥样硬化中的作用。本研究对于疾病治疗和临床医学领域具有重要意义。

研究人员利用小鼠模型,通过基因敲除或过表达Serpina3c,观察其在动脉粥样硬化中的作用,结果表明Serpina3c的表达水平与动脉粥样硬化的严重程度呈负相关。Serpina3c显著减少了动脉粥样硬化斑块的形成,并减轻了血管内皮损伤。此外,Serpina3c的凝血酶抑制作用有效降低了血栓形成,缓解了与凝血相关的炎症反应。 

   

计算与结果分析  

为了进一步探讨Serpina3c与凝血酶(thrombin)之间的相互作用机制,研究人员利用普美瑞云平台(https://pumeirui.com/)上的蛋白-蛋白对接工具,预测了Serpina3c与凝血酶的复合物结构,并详细解析了结合界面上氨基酸残基的分布特征。

操作简述:

准备受体蛋白和配体蛋白文件:从晶体结构(PDB ID: 2PV9)提取thrombin的3D结构作为受体蛋白,使用MODELLER构建小鼠Serpina3c的结构作为配体蛋白。

设置可选项:采用全局对接方式,设置配体蛋白旋转角度为15°,使用基于知识的评分函数进行打分,输出打分前10的结合构象并进行优化。

下图展示了Serpina3c与凝血酶(thrombin)相互作用的复合物结构(绿色表示Serpina3c,橘色表示thrombin)。复合物的结合模式显示,Serpina3c的Loop区插入至凝血酶的活性口袋中,类似于其同系物抗凝血酶-III(antithrombin-III)与凝血酶的晶体复合物结构。此外,研究还发现Serpina3c上的多个关键氨基酸残基与凝血酶活性位点相互作用,从而维持了Serpina3c与凝血酶之间的紧密结合。

图片

从上述研究结果,我们可以看到蛋白-蛋白对接方法展现出了强大的预测能力,能够精确地模拟出配体蛋白(Serpina3c)与受体蛋白(thrombin)之间的结合模式。这种方法不仅详尽地解析了结合界面的残基分布特征,还通过高精度的计算分析,鉴别出了对复合物稳定性及结合亲和力具有关键贡献的热点残基。这些热点残基在Serpina3c与thrombin的相互作用中扮演着至关重要的角色,它们的存在和分布直接影响了复合物的形成、稳定性和功能。通过深入解析这些热点残基的结构和功能特性,我们可以更深入地理解Serpina3c如何有效地抑制thrombin的活性,并揭示其在调节凝血和抗炎过程中的分子机制。  

案例总结  

本研究结合实验与计算方法,深入探讨了Serpina3c与凝血酶(thrombin)之间的作用机制。结果表明,Serpina3c通过靶向并抑制凝血酶,进而减少血管平滑肌细胞(VSMCs)的增殖和迁移,在动脉粥样硬化中发挥重要作用。该研究成果已发表于学术期刊《Clinical Science》。

          

参考文献  

Qian L, Ji J, Guo J, et al. Protective role of serpina3c as a novel thrombin inhibitor against atherosclerosis in mice[J]. Clinical Science, 2021, 135(3): 447-463.    

### 如何在 GEO 数据库中使用随机森林算法进行关键基因筛选 #### 获取数据集 为了从GEO数据库中获取心力衰竭患者的基因表达数据,可以访问NCBI的Gene Expression Omnibus (GEO)网站并下载所需的数据集。通常这些数据会以Series Matrix Files的形式存在,其中包含了样本的信息以及对应的基因表达量。 #### 数据预处理 一旦获得了原始数据文件之后,就需要对其进行一系列必要的前处理操作来确保后续分析的有效性和准确性: - **质量控制**:去除低质量或异常值样本。 - **标准化/归一化**:使不同批次间的数据具有可比性。 - **过滤无关特征**:只保留那些被认为可能研究目标有关联的探针集或者基因列表。 对于上述提到的心力衰竭案例而言,在此阶段应该聚焦于已知差异表达显著且生物学意义上重要的候选基因集合[^1]。 ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler # 假设df是一个已经加载好的DataFrame对象,包含有基因名和对应样品中的表达水平 scaler = StandardScaler() scaled_data = scaler.fit_transform(df) # 将数据划分为训练集和测试集 train_X, test_X, train_y, test_y = train_test_split(scaled_data, labels, test_size=0.2, random_state=42) ``` #### 构建随机森林模型 接下来就是构建随机森林分类器来进行重要性的评估工作了。这里可以通过调整参数如树的数量(`n_estimators`)、最大深度(`max_depth`)等优化性能表现;同时也可以采用交叉验证的方法提高泛化能力。 ```python from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score rf_clf = RandomForestClassifier(n_estimators=100, max_depth=None, min_samples_split=2, random_state=42) rf_clf.fit(train_X, train_y) predictions = rf_clf.predict(test_X) accuracy = accuracy_score(test_y, predictions) print(f'Accuracy on the testing set is {accuracy:.3f}') ``` #### 特征重要性评价 最后一步则是提取由随机森林给出的重要性评分,并据此识别出最具影响力的几个基因作为潜在的关键因素。这不仅有助于理解疾病机制背后隐藏着怎样的分子事件链路图谱,也为下一步开展功能实验提供了理论依据和支持。 ```python feature_importances = rf_clf.feature_importances_ important_genes_indices = (-feature_importances).argsort()[:6] for idx in important_genes_indices: gene_name = df.columns[idx] importance_value = feature_importances[idx] print(f'{gene_name}: Importance value={importance_value:.4f}') # 输出类似于这样的结果: # HMOX2: Importance value=0.1879 # SERPINA3: Importance value=0.1562 # ... ``` 通过这种方式可以从大量复杂的生物医学数据集中挖掘出有价值的遗传标记物,进而推动个性化医疗的发展进程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值