Qwen2.5大模型解读

一、Qwen 简介

2023年8月,阿里首次开源通义千问第一代模型Qwen-7B,这是一个有70亿参数的通用语言模型。在此基础上,Qwen扩展了更多的参数版本,比如0.5B、14B、32B、72B等。与此同时,
Qwen也在不断扩展能力,可以支持更多的模态输入,比如先后开源了Qwen-VL视觉语言模型和Qwen-Audio音频语言模型。

在这里插入图片描述

二、Qwen2.5 解读

2.1 概要

2024年9⽉发布了 Qwen2.5系列,涵盖了多种尺⼨的⼤语⾔模型、多模态模型、数学模型以及代码模型,能够为不同领域的应⽤提供强有⼒的⽀持。不论是在⾃然语⾔处理任务中的⽂本⽣成与问答,还是在编程领域的代码⽣成与辅助,或是数学问题的求解,Qwen2.5 都能展现出⾊的表现。每种尺⼨的模型均包含基础版本、以及量化版本的指令微调模型,充分满⾜了⽤⼾在各类应⽤场景中的多样化需求。具体版本内容如下:
• Qwen2.5: 0.5B, 1.5B, 3B, 7B, 14B, 32B, 以及72B;
• Qwen2.5-Coder: 1.5B, 7B, 以及即将推出的32B;
• Qwen2.5-Math: 1.5B, 7B, 以及72B。

在这里插入图片描述

2.2 模型架构

Qwen2.5系列是基于Transformer架构的语言模型,包括密集模型MoE模型

  • 密集模型采用了Grouped Query Attention(GQA)、SwiGLU激活函数、Rotary Positional Embeddings(RoPE)以及QKV bias等技术来提高模型性能。
  • MoE模型则使用了专门的MoE层替换标准的feed-forward网络层,并通过细粒度专家分割和共享专家路由等策略提高了模型能力。

2.3 改进方法

Qwen2.5系列模型经过预训练和后处理两个阶段的改进,在高质量预训练数据集的基础上,通过多阶段强化学习等技术进行后处理,提高了人类偏好、长文本生成、结构数据分析和指令遵循等方面的能力:

  1. 在预训练阶段,提高数据质量:采用了更加高质量的数据集和数据混合策略,包括更好的控制令牌和数学代码数据集,以及更好的合成数据。同时,他们还引入了长上下文预训练,将初始预训练阶段的上下文长度扩展到4,096个标记,最终扩展到32,768个标记。
  2. 在post-training阶段,扩充数据范围+两阶段强化学习:作者进行了两个关键的改进:一是增加了监督式微调数据覆盖范围,包括长期序列生成、数学问题解决、编程、指令遵循、结构理解、逻辑推理、跨语言转移和稳健系统指令等方面;二是采用了两阶段强化学习,分为离线RL和在线RL,以进一步提升模型的性能。

2.4 强化学习训练

第一阶段:离线强化学习

  • 使用预先准备好的训练信号,这些信号通常是通过监督性微调(SFT)模型对新查询集进行采样生成的。
  • 正样本和负样本是通过 质量检查和直接偏好优化(DPO) 训练生成的,这些信号在训练前已经确定,不会随着训练过程动态变化。
  • 适用于那些标准答案存在但难以通过奖励模型实时评估的任务,例如数学、编程、指令遵循和逻辑推理等。

第二阶段:在线强化学习

  • 使用动态生成的训练信号,这些信号是通过奖励模型对模型生成的响应进行实时评估得到的。
  • 奖励模型会根据响应的质量(如真实性、帮助性、简洁性、相关性、无害性和去偏见等)动态调整训练信号。使模型能够更好地适应人类的偏好和期望。
  • 适用于需要实时反馈和动态调整的任务,例如生成符合人类偏好的自然语言响应。例如对话生成、文本生成等。

2.5 实验评估

基础能力的测试

包括自然语言理解、编程、数学、科学知识、推理等方面。在多个公开数据集上结果显示,Qwen2.5系列模型在各个基准上都表现出色,特别是在小规模模型方面具有很强的优势。
在这里插入图片描述

长上下文处理能力

使用了三个不同的基准来评估模型在这个方面的表现,并将其与其他现有的开源和专有的长上下文模型进行了比较。结果显示,Qwen2.5系列模型在这方面也表现出色,尤其是在超长上下文的情况下。
在这里插入图片描述

奖励模型评估

使用了多个不同的基准来评估模型在这个方面的表现,并将其与其他现有的奖励模型进行了比较。结果显示,目前还没有一种有效的奖励模型评估方法,因此需要进一步研究这个问题。
在这里插入图片描述

<think>好的,我需要帮助用户了解如何对LLaMA-Factory进行微调以及Qwen源码的解析。首先,用户提到了参考站内的引用,其中引用[2]详细介绍了环境准备和安装步骤。我应该先整理这些信息,确保步骤清晰正确。 接下来,关于微调方法,用户可能想知道具体的操作流程。根据引用[2],微调前需要准备数据集,可能需要配置数据路径。LLaMA-Factory支持多种微调方法,比如LoRA,我需要解释这些方法的基本原理和如何选择参数。同时,启动训练的命令行示例需要准确无误,确保用户能复制使用。 然后是Qwen源码解析部分。用户可能对模型结构、注意力机制和训练流程感兴趣。我需要简要描述Qwen的架构,比如Transformer层和位置编码,并提到其高效的自注意力实现。此外,结合LLaMA-Factory的微调流程,说明如何在现有模型基础上进行适配,比如修改模型配置文件。 最后,生成相关题时要覆盖微调步骤、配置调整、性能优化和源码结构等方面,帮助用户深入理解。需要确保所有技术术语使用正确,并引用提供的参考资料,比如环境准备和项目官网链接。</think>### LLaMA-Factory 微调方法解析 #### 一、微调流程 1. **数据准备** - 支持JSON格式数据集,需包含"instruction"(任务描述)、"input"(输入数据)、"output"(期望输出)三个字段 - 数据路径配置示例: ```python data_args = dict( dataset_dir="data", template="qwen", task_type="supervised_finetuning" ) ``` 2. **微调方法选择** - **LoRA**:通过低秩矩阵分解实现参数高效微调,适合显存受限场景。核心
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI 菌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值