点击蓝字关注我们
导读
长读长扩增子为群落提供了物种水平的解决方案。由于纳米孔测序早期具有高错误率,它在16S rRNA的研究中没有广泛使用。随着测序技术的进步,Nanopore引入了带有Q20+试剂的R10.4.1芯片,实现了99%以上的准确率。目前没有缺乏关于使用R10.4.1芯片对16S rRNA测序的性能的研究,也没有发表关于准确性提高对使用16S ONT数据的分类学(R9.4.1至R10.4.1)的影响的研究。在这项研究中,使用Novaseq、Pacbio Sequel II和Nanopore PromethION平台(R9.4.1和R10.4.1)通过16S rRNA扩增子测序对多种类型的微生物样本进行了研究。在模拟群落样本中,我们展示了错误率、召回率、精确度等指标。R10.4.1和PB平台在环境样本中揭示了类似的微生物组。本研究表明,R10.4.1全长16S rRNA序列可用于环境微生物群的物种鉴定。
2023年10月6日,环境微生物领域业内权威期刊杂志Applied and Environmental Microbiology(简称AEM)在线发表了华中农业大学陈雯莉教授团队的研究成果,ONT 16S rRNA评测文章,文章题目为“The Newest Oxford Nanopore R10.4.1 Full-length 16S rRNA Sequencing Enables the Accurate Resolution of Species-Level Microbial Community Profiling”。华中农业大学博士生张天缘是论文第一作者,武汉贝纳基因的李汉洲和曹健是论文的第二作者和第四作者。
研究思路
本研究应用Oxford Nanopore PromethION平台(R9.4.1和R10.4.1)、Pacbio Sequel II和Novaseq平台通过16S rRNA扩增子测序对3个模拟群落和3个环境样本进行测序。模拟群落包括商业模拟群落Zymo D6305、实验室合成群落S1(丰度差异较大)和S2(丰度差异较小),包含实验室合成群落包含了2对同属物种,其中还有具有高GC基因组含量的链霉菌。针对模拟群落,从reads层面评估错误分布、序列一致性分布和正确分类的reads比例;从种属层面比较了不同方法获得的丰度、召回率、精确度、L1距离等指标。针对环境样品,在种属水平上比较了top15丰度、相关性、分类比例等指标;比较了不同平台获得的alpha多样性和beta多样性结果。
图1 研究设计
主要研究结论
1.结合R10.4.1测序芯片和Kit14试剂盒生成高质量的16S rRNA原始数据
ONT R10.4.1原始下机数据Q值为18.77,过滤掉接头和引物后的Clean reads平均Q值可达22.41(准确度99.42%),相比于R9.4.1明显提升。ONT R10.4.1的错误率相比R9.4.1明显改善,特别是缺失率减少了80.59%,错配率减少了42.80%,但其错误率仍高于PB数据。
图2 ONT R10.4.1测序质量
2.R10.4.1在复杂群落中表现优秀,可检测到极低丰度的物种
在Zymo群落和S2群落的种水平分析中,ONT R10.4.1和PB测序数据都可以获得完整的召回率。针对复杂的S1群落,仅ONT数据获得完整的召回率,其表现更为优秀,且R10.4.1获得了比R9.4.1更小的L1距离。
图3 S1样品不同平台基准测试结果
3.R10.4.1可以检测到更多的种和属分类,且与PB平台具有相似的物种组成和多样性
在真实环境样本的测试中,ONT R10.4.1数据鉴定到的种和属的数量均多于PB数。在环境样品中R10.4.1数据和PB数据检测到共有种和共有属数目通常最多。在土壤样本中,使用LAST分类器比对NCBI数据库时,二者种水平的相关性可达0.990(p<0.05),二者具有接近Shannon指数和Simpson指数。
图4 相关性及多样性分析
4.ONT数据5万条成本低廉且更容易接近饱和,测序结果受分类器影响大于测序平台
当使用LAST分类器时,R10.4.1数据通常更难饱和。对于NW样品,需要至少26,000 条reads才可以达到饱和,但对于HS和YW样品,需要更多reads(~40,000条)。且5万条ONT reads的成本与3万条PB reads的成本相当。分类器对群落组成的影响高于测序平台对群落组成的影响。
图5 稀释曲线和PERMANOVA分析
研究小结
R10.4.1芯片提高了16S rRNA数据的准确性,可以为研究者提供“种”级别的研究手段,具有更多reads条数和更低价格的优势。
参考文献:
Zhang T, Li H, Ma S, et al. The Newest Oxford Nanopore R10.4.1 Full-length 16S rRNA Sequencing Enables the Accurate Resolution of Species-Level Microbial Community Profiling. Appl Environ Microbiol. 2023
本期关键词推荐:
ONT;16S rRNA;微生物多样性;Nanopore R10.4.1 Flowcell;三代测序
本文为非OA期刊,需要全文的老师请联系贝纳基因(微信号:benagen_com)小编~
往期精彩:
文献解读|Nature 揭秘植物免疫过程RNA二级结构如何影响蛋白翻译起始
文献解读 | PLOS Biology期刊发表基于转录组在中药活性成分生物合成应用方面研究成果
文献解读|纳米孔direct-cDNA测序对秀丽隐杆线虫转录本的定量分析揭示了非反式剪接mRNA的末端发夹结构
DRS文献解读 | SINEUP非编码RNA活性取决于特定的m6A核苷酸
DRS专题:Direct RNA测序在人方向的研究思路及案例解析
DRS专题 | 卓越无限,贝纳基因Direct RNA分析升级再突破!
武汉贝纳科技有限公司(下称"贝纳基因")成立于2012年,总部位于武汉高农生物园,是一家专注于Nanopore测序、二代测序和生物信息分析技术开发和应用的国家高新技术企业。核心团队拥有多年高通量测序、Nanopore测序和生物信息分析经验,在Nature和Science系列杂志发表多篇学术论文,博士、硕士学历员工占企业员工总数的72%。拥有自主测序平台(国内首批引进Nanopore PromethION平台)和专业的生物信息分析团队。
贝纳基因使用Nanopore平台完成全球第一个大型复杂植物基因组(菊花基因组)的组装和后续分析工作。提出并推动千种本草基因组计划,并构建药用植物基因组数据库,推动药材研究的发展。
贝纳基因使用Nanopore平台完成数千份细菌基因组、宏基因组测序和数据分析;完成数千份全长转录组和Direct转录组测序及分析。提出并推动基于Nanopore测序的万种微生物基因组完成图计划和十万人的Nanopore宏基因组研究计划。
贝纳基因开发了基于Nanopore平台的微生物检测体系,自主开发的数据库涵盖现已正式发表的所有微生物基因组,大型测序仪单机一次运行可以产生7.2T数据,小型便携式测序系统可用于临床检测和野外作业。
猜你喜欢
iMeta简介 高引文章 高颜值绘图imageGP 网络分析iNAP
iMeta网页工具 代谢组MetOrigin 美吉云乳酸化预测DeepKla
iMeta综述 肠菌菌群 植物菌群 口腔菌群 蛋白质结构预测
10000+:菌群分析 宝宝与猫狗 梅毒狂想曲 提DNA发Nature
一文读懂:宏基因组 寄生虫益处 进化树 必备技能:提问 搜索 Endnote
16S功能预测 PICRUSt FAPROTAX Bugbase Tax4Fun
生物科普: 肠道细菌 人体上的生命 生命大跃进 细胞暗战 人体奥秘
写在后面
为鼓励读者交流快速解决科研困难,我们建立了“宏基因组”讨论群,己有国内外6000+ 科研人员加入。请添加主编微信meta-genomics带你入群,务必备注“姓名-单位-研究方向-职称/年级”。高级职称请注明身份,另有海内外微生物PI群供大佬合作交流。技术问题寻求帮助,首先阅读《如何优雅的提问》学习解决问题思路,仍未解决群内讨论,问题不私聊,帮助同行。
点击阅读原文