ubuntu下PyCharm导入ros库

本文介绍了如何在PyCharm中配置ROS环境,包括launch文件的关联与roslib的导入。通过修改PyCharm的启动配置,使得PyCharm能够加载ROS环境变量,方便进行ROS项目的开发。

然后,正文来了,我将在下面介绍2点环境配置,1.launch文件的关联,2.roslib的导入

  1. launch文件的关联
pycharm自己是不支持launch文件的,但是我们还是希望用ide实现编写,例如这样:



具体做法就是在file/settings里面打开filetypes


然后在registered patterns里面添加*.launch文件,点ok完成launch文件的关联

2.roslib的导入

这里介绍pycharm要如何和终端环境bashrc中配置的那样直接关联/opt/ros/indigo/setup.bash。

首先打开终端,然后输入:

[html] view plain copy
  1. gedit ~/.local/share/applications/jetbrains-pycharm-ce.desktop #当前用户可用  


[html] view plain copy
  1. gedit /usr/share/applications/jetbrains-pycharm-ce.desktop #全部用户可用  



然后会出现一个有以下内容的文档:

[plain] view plain copy
  1. [Desktop Entry]  
  2. Version=1.0  
  3. Type=Application  
  4. Name=PyCharm Community Edition  
  5. Icon=/home/howe/Downloads/pycharm-community-2017.1/bin/pycharm.png  
  6. Exec="/home/howe/Downloads/pycharm-community-2017.1/bin/pycharm.sh" %f  
  7. Comment=The Drive to Develop  
  8. Categories=Development;IDE;  
  9. Terminal=false  
  10. StartupWMClass=jetbrains-pycharm-ce  


如果是空白文档,那么就是文件开错了,输入:
[plain] view plain copy
  1. gedit /usr/share/applications/  
然后tab自动补全以下。

接着修改其中的Exec变量,在‘=’后面添加bash -i -c,改完如下:

[plain] view plain copy
  1. Exec= bash -i -c "/home/ubu/tools/pycharm-professional-2016.2.3/bin/pycharm.sh" %f  
保存并退出。 添加 bash -i -c 是为了在通过快捷方式启动PyCharm的同时加载~/.bashrc中的ROS环境变量。然后重启pycharm。完事
### 配置 PyCharm 使用 OpenCV-Python 开发 为了在 Ubuntu 18.04 上配置 PyCharm 来使用 `opencv-python` 进行开发,需确保 Python 环境正确设置并安装必要的依赖项。 #### 创建虚拟环境 考虑到 ROS 系统中的 Python 版本可能与所需版本存在冲突,建议使用 Anaconda 创建独立的虚拟环境来管理项目所需的包和[^3]。这有助于隔离不同项目的依赖关系,防止相互干扰。 ```bash # 安装 Miniconda 或 Anaconda (如果尚未安装) wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh bash Miniconda3-latest-Linux-x86_64.sh # 创建新的 conda 虚拟环境 conda create --name opencv_env python=3.6 source activate opencv_env ``` #### 安装 OpenCV 及其贡献模块 通过 pip 工具可以直接安装预编译好的二进制文件形式发布的 `opencv-python` 和 `opencv-contrib-python` 包,简化了安装过程,并解决了构建轮子失败的问题[^2]。 ```bash pip install opencv-python pip install opencv-contrib-python ``` 对于某些情况下遇到的安装错误,可先尝试安装辅助工具如 `scikit-build` 和 `cmake`,这些工具能帮助顺利完成软件包的安装流程[^5]。 #### 在 PyCharm 中配置解释器 启动 PyCharm 后,进入 **File -> Settings -> Project: your_project_name -> Python Interpreter** 页面,点击右上角齿轮图标选择 Add... ,然后挑选 Conda Environment 下方的 Existing environment 并浏览至之前创建的 anaconda virtualenv 的路径完成关联操作。 此时应该可以在 IDE 内部顺利导入 cv2 并编写测试代码验证安装是否成功: ```python import cv2 print(cv2.__version__) img = cv2.imread('example.jpg') cv2.imshow('Image', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 上述方法适用于大多数常规场景下的快速部署需求;而对于更复杂的定制化要求,则可以根据具体情况进行调整优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值