三维空间中点线面体的自由度

本文详细解析了三维空间中点、线、面、体等几何元素的自由度。从点的3个自由度到方向向量的2个自由度,再到线段、射线、直线、面及球体的不同自由度数,提供了深入的理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 点

3个自由度。因为点只有位置属性,而确定这一点的位置恰好需要3个标量。

2. 方向向量

2个自由度。方向向量即单位向量,或者任何模长的向量,有两种理解方式:

  • 三维向量有3个自由度,因为是单位向量,所以少了一个自由度;
  • 在球坐标系中只需两个角即可表示单位向量,不需要长度。

3. 线段

6个自由度。一条线段由两个自由的点确定。

4. 射线

5个自由度。一个点和一个方向向量即可表示射线。

5. 直线

4个自由度。首先有一个方向,这是2个自由度,以该方向为法向的过原点的面与该直线有唯一的交点,确定这个点就确定了这条直线。在平面上的点是2个自由度。

6. 面

3个自由度,方向向量(2个自由度)和到原点的距离。

7. 球

4个自由度。因为比起点,球体需要额外的一个自由度来描述半径。

参考文献

怎么理解空间中直线的自由度? - 知乎

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值