1. 点
3个自由度。因为点只有位置属性,而确定这一点的位置恰好需要3个标量。
2. 方向向量
2个自由度。方向向量即单位向量,或者任何模长的向量,有两种理解方式:
- 三维向量有3个自由度,因为是单位向量,所以少了一个自由度;
- 在球坐标系中只需两个角即可表示单位向量,不需要长度。
3. 线段
6个自由度。一条线段由两个自由的点确定。
4. 射线
5个自由度。一个点和一个方向向量即可表示射线。
5. 直线
4个自由度。首先有一个方向,这是2个自由度,以该方向为法向的过原点的面与该直线有唯一的交点,确定这个点就确定了这条直线。在平面上的点是2个自由度。
6. 面
3个自由度,方向向量(2个自由度)和到原点的距离。
7. 球
4个自由度。因为比起点,球体需要额外的一个自由度来描述半径。