【控制理论】干扰观测控制读书笔记(Disturbance Observer-Based on control)

对于高精度的控制要求,必然要考虑干扰对系统的影响,简单介绍一下干扰抑制的背景和控制方法。
一、背景
为了更清晰地分析,看到控制的本质,从最简单的一阶惯性环节对象分析起, 系统的状态方程为:

假设期望输出yr是常数,dyr=0,且定义则有


1、高增益控制
控制器设计为,将控制率带入系统状态方程,有,一阶常系数非奇异微分方程求解,得到

用控制框图表示一下,更加清晰一点:

如果干扰是有界的,满足\left | d(t)) \right |<d^*,那么有:

\left | e_y(t)) \right |\leqslant \left | e^{-(a+k)t}e_y(0)) \right |+|\int_{0} ^{t} e^{-(a+k)(t-\tau)}d(\tau) d\tau|}

则当t趋于无穷大时,稳态误差也是一个有界的值。,增益k越大,误差也就越小。

考虑最一般的情况,如果干扰d是一个常值干扰,则,考虑趋于无穷时刻的偏差,有

可见对于最简单的一阶惯性环节,在干扰存在时,这种方法无法消除干扰带来的稳态误差,而且为了使得误差尽可能小,需要取高增益控制率以抑制扰动的影响。

2、积分控制

积分项可以消除稳态误差,如果考虑带有积分项的控制率,带入状态方程有

化为状态空间形式,

从公式可以看出,当干扰为常值干扰时,干扰项的导数为零,且A矩阵是Hurwitz的,此时系统渐进稳定,无穷时刻的偏差为零。

Hurwitz矩阵:矩阵特征值实部都小于零的矩阵,如果系统矩阵是Hurwitz的,那么系统渐进稳定。

考虑如果干扰的导数非零,但是其有界的情况:

最终有

从以上的分析可以知道,积分控制能消除常值干扰,但是对于变化的干扰稳态误差依然存在。

 

3、滑模控制

之前写了一篇文章详细讨论了滑模控制器的实现和分析过程,https://blog.csdn.net/xiaohejiaoyiya/article/details/90271529,这里就不再重复分析了。那个例子是考虑一个简单的双积分器对象,

先设计一个可以让状态渐进稳定的滑模面,然后基于此设计控制率让状态达到滑模面上。

这里只把滑模控制器的控制率写一下:

以上几种控制器都是用高增益的方式来抑制干扰,如果干扰有界,或者干扰的变化有界,那么我用比你干扰最大值的控制能量来压制,简单来讲就是比你快,还比你强,那么不管你干扰是怎样的形式,都翻不起多大风浪,系统是稳定的。

除了以上介绍了三种,H无穷、鲁棒控制也是同样的思路。这种控制方式简单粗放有误差但是很有效,下面另一种基于补偿的控制策略,也就是基于干扰观测器的控制方式。

 

二、基于干扰观测器的控制

基本思路是先构造干扰观测器将干扰量测出来,用估计干扰补偿实际干扰,如果模型估计得很准确(很难很难),那么系统将简化成一个不受干扰影响的纯净系统,再在这基础上设计反馈控制器就比较简单了。

 

1、DOB

对于一个系统:

,假设无穷时间后干扰会收敛到一个常值,,

若设计如下的DOB干扰观测器

则估计干扰和实际干扰之间的偏差值为:

如果矩阵-LB是赫尔维兹矩阵,那么最终估计干扰值会收敛到实际干扰值,此时只需要设计控制器,带入系统方程

如果(A+BK)是Hurwitz的,那么系统稳定

控制框图如下:

 

2、ESO(Extended State Observer)

ESO是韩京清老师提出的一类干扰估计方法, 常常和跟踪微分器、非线性PID组合在一起构成自抗扰控制器(ADRC控制)。

把一般系统的状态方程逐个写出来:

如果把包括系统动态、模型不确定性、外部扰动统一用一个新的状态来表示,那么有扩张之后的状态方程:

设计状态观测器使得zi跟踪xi,i=[1,n+1]

观察干扰收敛的情况:

写成状态空间形式:

和【2积分控制】中分析的类似,设计\beta_i使得矩阵是Hurwitz的,且h(t)有界,那么误差状态将收敛到零, 估计干扰将收敛到实际干扰。

将干扰补偿后,再根据相应的性能指标设计反馈控制器。

 

基于干扰观测器的补偿控制能施加更精准的控制,从能量输出角度讲它也更加经济。但是这种方法对模型的要求要更高,通常需要花很多工夫在辨识上。

如果模型不太准确,有可能干扰的补偿没起到作用,反而还产生了更坏的影响。

本博客是阅读李世华老师专著《Disturbance Observer-Based on control》的笔记

### 回答1: 扰动观测器控制方法及应用pdf主要介绍了在控制系统中应用扰动观测器的技术和方法。扰动观测器Disturbance Observer,简称DOB)是一种能够实时测量系统扰动并进行补偿的控制器,它可以减小系统的误差和稳定性等问题,提高控制系统的性能。 扰动观测器控制方法及应用pdf中,首先具体介绍了扰动观测器的原理和特点,以及其在控制系统中的优势和应用场景。然后详细阐述了扰动观测器的设计和实现方法,包括扰动观测器的结构、参数计算、实时测量和补偿等方面。此外,还介绍了一系列基于扰动观测器控制的实际应用,如机械控制系统、电力电子变流器、车辆控制系统等。 总的来说,扰动观测器控制方法及应用pdf是一本全面介绍扰动观测器控制技术的理论与实践,对于从事控制系统设计和研发的工程师和研究者来说,具有较高的参考价值和实用性。 ### 回答2: “Disturbance observer-based control methods and application pdf”这个话题主要是介绍扰动观测器控制方法及其应用的相关内容。扰动指的是对于控制系统运行的一种影响,例如摩擦、外界干扰、负载变化等,这些因素都可能会对控制系统的性能产生一定的影响。而扰动观测器控制方法则是一种通过观测扰动来实现控制的方法,它能够在一定程度上减小或消除扰动对系统控制性能的影响,从而提高控制系统的稳定性、精度和鲁棒性。 扰动观测器控制方法可分为基于模型和基于数据的两种类型。其中基于模型的方法主要依赖于对系统模型的建模和参数估计,它通过将模型误差定义为扰动,来实现对扰动的观测和补偿。而基于数据的方法则是直接通过对系统输入输出信号进行采样和分析,来估计扰动的大小和频率,并根据扰动的特性对系统进行控制和补偿。 扰动观测器控制方法在许多领域都有着广泛的应用,例如机器人控制、飞行控制、汽车控制、精密仪器控制等。通过采用扰动观测器控制方法,可以有效地提高控制系统的性能和稳定性,从而满足实际工程应用的要求。同时,随着计算机技术的不断发展,扰动观测器控制方法也在不断地优化和改进,为实现更加高效和精确的控制提供了更多的可能性。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值