VINS-Mono是HKUST的Shen Shaojie团队开源的一套Visual-Inertial融合定位算法,https://github.com/HKUST-Aerial-Robotics/VINS-Mono,是用紧耦合方法实现的,通过单目+IMU恢复出尺度,效果很好,接下来对会该算法框架逐步解析,以便二次开发。
那么为什么要进行视觉与IMU的融合呢,自己总结的主要有以下几点:
- 视觉与IMU的融合可以借助IMU较高的采样频率,进而提高系统的输出频率。
- 视觉与IMU的融合可以提高视觉的鲁棒性,如视觉SLAM因为某些运动或场景出现的错误结果。
- 视觉与IMU的融合可以有效的消除IMU的积分漂移。
- 视觉与IMU的融合能够校正IMU的Bias。
- 单目与IMU的融合可以有效解决单目尺度不可观测的问题。
总体布局
该算法主要有以下几个模块:
1.预处理
图像特征光流跟踪
IMU数据预积分
2.初始化
纯视觉Sfm
Sfm与IMU积分的松耦合
3.基于滑动窗口的非线性优化实现紧耦合
4.回环检测与重定位
5.四自由度位姿图优化
原论文:
- 系统从测量预处理(IV)开始,在其中提取和跟踪特征,对两个连续帧间的IMU测量值进行预积分。
- 初始化过程(V)提供了所有必要的值,