大模型的“淬炼”

——大模型也要经历“琢石成玉”的过程。

       大规模语言模型的训练流程的确可以根据不同的模型架构、应用场景以及资源限制等因素有所变化。预训练和微调是最基本也是最常见的两个阶段,几乎在所有现代大模型训练流程中都会出现。而诸如奖励建模、强化学习尤其是人类反馈强化学习(RLHF),则是更高级别的训练技术和策略,它们在追求更高水平的语言理解和生成质量,以及解决道德和伦理问题方面发挥着重要作用。

       对于一些较为基础的应用场景,可能仅通过预训练和微调就足以取得较好的效果,而对于更为复杂的、需要模型具备高度互动和适应性的任务,则可能进一步引入强化学习和其他形式的迭代优化方法。此外,确实存在一些情况下,模型在部署后会经历持续学习或在线学习,但这通常涉及到额外的工程设计和技术挑战,不是所有模型都具备这一特性。 

1.大规模语言模型的“淬炼”:

  1. 预训练阶段 (Pre-training):

    • 在预训练阶段,模型通常是基于 Transformer 架构的深度学习模型,如BERT、GPT系列等。

    • BERT(Bidirectional Encoder Representations from Transformers):通过遮蔽语言模型(MLM)的方式训练。它随机遮蔽输入序列中的部分词汇,然后要求模型预测被遮蔽的内容。由于BERT可以同时考虑上下文的左右两边信息,因此它可以学习到非常强大的双向语言表示。

    • GPT(Generative Pre-training Transformer)及其后续版本:通过自回归语言模型(ALM)方式进行训练。模型试图预测下一个词语给定前面的词语序列,这样模型可以从左到右地学习文本序列的概率分布,从而捕获语言的长期依赖关系和生成能力。

    • 预训练的目标是在大规模未标记文本数据上学习通用的语言结构和模式,使得模型能够理解语法、句法、语义和常识性信息。

  2. 微调阶段 (Fine-tuning):

    • 当预训练完成后,模型会被应用到特定的自然语言处理任务上,这时就需要针对特定任务的数据集进行微调。
    • 微调过程中,模型结构保持不变,只是在其顶部添加任务相关的输出层,并重新调整所有参数以优化特定任务的损失函数,比如文本分类任务中的交叉熵损失或者问答任务中的跨度选择损失。
    • 这个阶段的训练数据是有标签的,包含了目标任务的示例输入和对应的正确输出。
  3. 奖励建模 (Reward Modeling) 和强化学习 (Reinforcement Learning):

    • 在某些高级应用中,特别是当直接优化某个特定非平凡目标时(如对话系统的连贯性、有用性或道德规范遵守程度),可以结合强化学习来优化模型。
    • 模型在生成文本之后,其输出将依据某种奖励函数得到评价。这个奖励函数可以是自动化的评估指标,也可以是人工标注的满意度评分。
    • 强化学习的目标是最大化期望奖励,模型通过不断迭代和探索最优策略来改进自己的行为。
  4. 人类反馈强化学习 (Reinforcement Learning with Human Feedback, RLHF):

    • 在RLHF中,模型的输出不只是通过自动指标评估,而是直接获取人类评估员的主观反馈作为奖励信号。
    • 评估员会对模型生成的文本打分,高分的输出被认为是更好的,模型参数将被调整以模仿这样的高分输出。
    • 这个过程有助于使模型更加人性化,并能更好地遵循社会规范和价值观。
  5. 持续学习与在线学习 (Continual Learning and Online Learning):

    • 模型一旦部署到实际环境中,还可以通过实时接收新数据和反馈进行持续学习。
    • 在线学习意味着模型可以根据实时用户交互数据动态地调整自身,以应对新的语言现象或更新旧的信息,保持模型的时效性和准确性。
    • 这种方式特别适用于需要随着时间和用户需求变化而不断自我升级的应用场景。然而,在实践中,考虑到安全性和稳定性,持续学习的实施往往伴随着严格控制和审查机制。

2.各种“淬炼”的作用

这几个阶段在训练大规模语言模型时起着不同的作用,通过图表可以看出。

大规模语言模型训练过程

预训练有监督微调奖励建模强化学习
语言基础学习针对具体任务的优化交互反馈改进安全、可靠和人性化

下面详细介绍:

  1. 预训练

    • 目的:在无标签的大量文本数据上训练模型,使其初步获得对语言的通用理解能力。
    • 方法:通过自监督学习任务,如掩码语言模型(MLM)或自回归语言模型(ARLM),模型学习预测上下文中缺失的词汇或生成连续的文本序列。
    • 作用:模型在大规模数据上学习到丰富的语言结构和上下文依赖,从而形成高质量的语义和句法特征表示。
  2. 有监督微调

    • 目的:针对特定任务进行定制化训练,使模型能够执行具体任务,如文本分类、问答、机器翻译等。
    • 方法:使用带有标签的特定任务数据集,对预训练模型的顶层或部分参数进行微调。
    • 作用:模型基于预训练得到的基础语言知识,进一步学习特定任务所需的技能,提高在特定任务上的准确性和性能。
  3. 奖励建模(也可能是基于强化学习的优化阶段):

    • 目的:当标准微调无法满足复杂交互式应用需求时,通过设计奖励机制,使模型能够根据反馈优化自身行为。
    • 方法:使用强化学习算法,模型输出结果并接收到某种形式的奖励信号(如来自人类的评分或明确的正负反馈),根据这些反馈更新策略以提高长期奖励得分。
    • 作用:使模型适应更灵活和多变的场景,学会在不同的交互环境下生成更加合适、高质量的输出。
  4. 强化学习与人类反馈(RLHF, Reinforcement Learning with Human Feedback)

    • 目的:利用真实的用户反馈或专家评估,对模型的行为进行修正和优化,确保其输出更符合人类的价值观和社会规范。
    • 方法:收集人类评估员对模型输出的意见或打分,将其作为强化学习中的奖励信号,指导模型调整策略,以生成更合理、安全和人性化的响应。
    • 作用:在安全性、伦理性和用户体验等方面提升模型性能,特别是在高度敏感或交互性强的应用中显得尤为重要。

      总的来说,这几个阶段共同协作,逐步提升了大规模语言模型在不同场景下的适应性和表现力。从最初的语言基础学习,到针对具体任务的优化,再到通过交互反馈不断改进,模型的能力逐渐精细化和专业化。

3.递进式“淬炼”

       这几个阶段是一个递进的过程,每个阶段都是建立在前一阶段的基础上,并且充分考虑了如何最大限度地利用现有数据资源以及采用最适合的学习方法来不断提升模型对于各种应用场景的理解和适应能力:

  1. 预训练阶段着重于大规模未标注数据的利用,让模型获取广泛的语言基础知识和通用语言理解能力。
  2. 微调阶段则是在预训练模型的基础上,针对性地利用少量有标注的数据进行细粒度调整,使得模型能精准适应具体任务需求。
  3. 强化学习阶段通常用于更复杂的环境,模型通过与环境互动和接收反馈不断自我迭代优化,以求达到期望的性能指标或行为准则。
  4. RLHF(强化学习结合人类反馈)则是进一步结合真实的人类判断和价值观,在道德、伦理及社会规范层面约束和引导模型行为,使之在实际应用中更加安全、可靠和人性化。

       通过这一系列过程,模型不仅在技术层面上不断提高性能,也在实践意义上越来越接近解决实际问题和满足用户需求的理想状态。

4.精细化和专业化的“淬炼”

在“精细调优和专业化提升阶段”,通常会采用以下几种方法来进一步提升大规模语言模型的表现:

4.1 领域迁移学习与微调

       向模型注入特定领域的大量专业知识,例如法律、医学、科研文献等领域的数据,对模型进行微调,使得模型能够理解和生成该领域内的专业术语和逻辑结构。

       领域迁移学习与微调是深度学习模型在特定领域内进行性能优化的重要手段。在这个过程中,基础的大规模预训练模型(如我这样的语言模型)首先已经在大规模无标注文本数据上进行了预训练,获得了良好的自然语言处理基础能力。当需要将其应用于某一特定领域时,可以采取以下步骤进行微调:

  1. 数据准备:收集和整理目标领域的专业数据集,这些数据可能包括学术论文、案例文档、报告、病历记录、法律条款等,视具体领域而定。

  2. 模型加载与初始化:从已有的大规模预训练模型开始,加载其权重作为初始状态,保留模型已经学到的一般性语言规律。

  3. 模型结构调整:根据特定任务需求,可能需要对模型结构进行一些调整,比如添加或修改某些层,以适应领域特有的信息处理要求。

  4. 微调训练:使用领域数据集对模型进行再训练,调整模型参数,使其能够识别和理解领域内的专业词汇、概念、句法结构以及逻辑关系。训练目标可能是文本分类、命名实体识别、问答系统、摘要生成等各种NLP任务。

  5. 评估与迭代优化:在独立的验证集上评估模型在目标领域的表现,根据评估结果不断调整超参数或训练策略,直到模型在该领域达到理想性能。

通过这种方式,原本泛化的模型就能获得针对特定领域的精细化能力和知识,从而有效提升在该领域的准确率和适用性。例如,在法律领域,微调后的模型将能更准确地解释法律条款、推断法律案件结果;在医学领域,则可帮助医生快速查阅相关文献、解读医疗报告等。

4.2 逻辑推理能力增强

       设计针对性的数据集和训练策略,使模型能够解决需要逻辑推理和因果关系判断的问题,如通过基于形式逻辑规则的数据集训练模型进行更精准的推理。

       逻辑推理能力对于人工智能模型来说是一项关键且具有挑战性的技能。为了增强模型在这方面的表现,可以从以下几个方面着手设计针对性的数据集和训练策略:

  1. 构造包含逻辑推理问题的数据集

    • 设计包含一系列蕴含、矛盾、并列、条件等逻辑关系的句子对或文本段落,其中一部分可以直接体现形式逻辑中的推理规则,如命题逻辑、一阶逻辑等。
    • 数据集中可以包含多种类型的逻辑推理题目,如图形推理、数学逻辑题、科学原理的推论等,模拟真实世界中需要推理分析的情境。
  2. 引入形式逻辑规则

    • 在模型训练阶段,显式地利用形式逻辑规则构建样本,例如,利用逻辑表达式的形式转换,让模型学会如何从前提推出结论。
    • 利用人工标注或者自动抽取的方法,搜集实际场景中的因果关系实例,并转化为模型可以学习的形式。
  3. 强化学习与交互式训练

    • 设计环境或任务,让模型通过试错学习的方式逐渐掌握逻辑推理技巧,例如,在模拟环境中做出决策并接收反馈来调整其行为策略。
    • 利用对话系统或游戏等形式,实现人机交互式的训练,使模型在与人类交流或游戏中逐步提升逻辑推理能力。
  4. 半监督或自监督学习

    利用未标记文本资源,通过自动生成假设-结论对或者挖掘潜在的因果关系链路来进行自我学习和改进。
  5. 层次化和模块化设计

    构建模型时考虑层次化和模块化的设计,将不同的逻辑推理子任务分配给专门的模块,每个模块负责不同类型或级别的推理,最终协同工作完成复杂的逻辑分析任务。
  6. 结合符号主义与连接主义方法

    结合传统的基于规则的符号主义方法与现代神经网络的连接主义方法,让模型同时具备处理形式逻辑规则的能力和学习复杂非线性关系的能力。

       通过上述方法,模型将有机会更好地理解和应用逻辑推理,增强在涉及因果关系判断和其他高级认知任务上的表现。然而,目前的机器学习模型虽然在许多领域取得了显著进步,但在完全模拟人类水平的逻辑推理能力上仍有很大挑战,这需要持续的研究和技术创新。

4.3 连贯性与一致性优化

       使用多轮对话、篇章级别的上下文依赖数据训练模型,提高其生成连续文本时保持主题一致、逻辑连贯的能力。

       提高模型在生成连续文本时的主题一致性及逻辑连贯性是自然语言处理(NLP)领域的一项重要任务。以下是针对这一目标的一些具体训练策略和数据集设计方法:

  1. 多轮对话数据集

    • 收集真实的多轮对话数据,包括但不限于客服对话、社交媒体聊天记录、论坛讨论等,这些数据可以帮助模型理解对话的上下文切换和话题延续。
    • 在训练过程中,确保每次迭代不仅关注单个话语,还要考虑前几轮对话的历史信息,通过序列到序列(Seq2Seq)模型加上注意力机制或长短期记忆网络(LSTM)等方式捕获并利用上下文信息。
  2. 篇章级别上下文依赖

    • 创建包含多个段落的文章数据集,每篇文章都有明确的主题和内部逻辑结构,模型需要学习如何在不同段落间保持主题的一致性和思想的递进。
    • 对于每个新的句子生成,除了当前句子外,还提供之前若干个相关句子作为上下文输入,从而促使模型建立跨句和跨段落的语义关联。
  3. 指代消解和共指链接

    • 训练模型识别并解析篇章中出现的代词和其他指示符所指代的对象,这是保持逻辑连贯性的重要组成部分。
    • 增加带有明确指代关系标注的数据集,帮助模型学会正确追踪和替换隐含变量。
  4. 篇章级连贯性评估指标

    在训练过程中,采用篇章级别的评价标准,比如coh-metric、BERTScore等衡量文本连贯性的指标,将其融入到损失函数中,指导模型优化方向。
  5. 预训练与微调

    使用预训练语言模型(如GPT系列、BERT等),它们在大规模无标注文本上预先学习了语言结构和模式,之后再针对特定的连贯性任务进行微调,这样能较好地继承通用的语言理解和生成能力。
  6. 对抗性训练

    可以设计对抗性样本,故意打乱文章的逻辑顺序或插入不连贯的信息,然后训练模型去修正这些问题,以此提高模型识别和修复连贯性问题的能力。

       综上所述,通过精心设计的数据集和有针对性的训练策略,可以让模型在生成连续文本时,有效提升其在不同尺度下的连贯性和一致性表现。

4.4 创造性内容生成

      通过启发式训练方法或者引入对抗网络技术,鼓励模型在生成文本时展现更高的创造性,如生成新颖的故事线、创新的观点或独特的表达方式。

      创造性内容生成是自然语言处理中的一个前沿挑战,它要求模型不仅能复制已有的语言模式,还能产生新颖且有意义的内容。下面是一些促进模型生成创造性内容的方法和技术:

  1. 强化学习

    利用强化学习框架,定义奖励函数来评估模型生成内容的新颖性、独特性和趣味性。例如,当模型生成的故事具有非典型情节转折或原创观点时,给予较高奖励,引导模型向更具有创造性的方向演化。
  2. 对抗生成网络 (GANs)

    将GAN架构应用于文本生成,其中一个网络(生成器)尝试创建新颖的内容,而另一个网络(判别器)则负责判断内容是否足够逼真或具有创造性。通过这种“猫鼠游戏”,生成器逐渐学会如何生成能够骗过判别器的独特文本。
  3. 多样性和探索性训练

    在训练过程中,可以有意增加对罕见词汇组合、非传统叙事结构以及新颖观点的采样权重,鼓励模型在输出中探索更多未曾见过的表达方式。
  4. 半监督学习结合小样本学习

    结合少量高质量的人工创作样本,通过半监督学习让模型理解优秀创意作品的特点,并尝试模仿其中的创新手法和思维模式。
  5. 基于图神经网络的创造力挖掘

    构建知识图谱,利用图神经网络捕捉实体间的复杂关系,使模型能够在生成故事、观点或论述时,灵活运用和重组知识,产生有深度和新颖性的内容。
  6. 可控文本生成

    设计特定的控制信号或提示,允许用户在生成过程中指定某些创新元素,如特定的情感色彩、人物设定、情节转折点等,赋予模型更多的创造性自主权。
  7. 迭代改进与交互式生成

    开发可交互式的文本生成系统,允许用户与模型实时交流并提供反馈,模型根据反馈不断调整和优化生成结果,从而逐渐增强创造性产出。

       通过上述方法,我们可以逐步培养模型生成创造性内容的能力,但值得注意的是,尽管技术手段可以推动模型的进步,创造性本身仍是一个主观性强且复杂的概念,完全模拟人类的创造性思维仍面临诸多挑战。

4.5 复杂情境理解

训练模型识别和解析复杂的文本环境和社会背景,包括但不限于文化差异、隐喻、讽刺等非字面意义的理解,以及综合多种线索进行深入的情境分析。

复杂情境理解对于自然语言处理模型来说是一项高级任务,它要求模型具备多层次的认知能力,以便准确解读文本背后的深层含义和复杂的社会文化语境。为了实现这一目标,可以从以下几个方面进行训练和优化:

  1. 跨文化理解

    • 训练数据包含多元文化的文本资源,帮助模型理解和适应不同文化背景下的话语习惯、价值观及社会规范。
    • 引入文化敏感特征的学习,比如节日习俗、历史事件、地域特色等,使得模型在处理文本时能考虑到文化差异。
  2. 语境推理

    • 利用长程依赖建模技术(如Transformer架构)捕获文本序列中远距离的上下文关联,确保模型能够依据前后文信息推断出词句的真实含义。
    • 对于篇章级别的理解,可以构建篇章级的注意力机制,让模型关注关键段落和句子之间的逻辑联系。
  3. 情感分析与语义蕴含

    • 基于预训练模型进行情感分析的微调,以识别和理解作者的态度、情绪以及言外之意,这对于识别讽刺和反讽至关重要。
    • 利用语义蕴含任务训练模型,使其能够确定两个文本片段之间是否存在隐含的关系(如矛盾、蕴涵或无关),这对于理解比喻和暗示非常重要。
  4. 多模态学习

    如果可能,整合视觉、听觉等多种感官输入,通过多模态学习提升模型对复杂情境的理解,因为非文字信息往往有助于揭示文本的隐含意义。
  5. 专门任务训练

    设计针对复杂情境理解的任务,例如讽刺检测、比喻解释、推理问题解决等,通过针对性的训练加强模型在这方面的表现。
  6. 持续学习与迭代优化

    模型应当具备持续学习和自我更新的能力,随着接收到更多真实世界的反馈和新数据,不断提升对复杂情境的理解水平。

通过以上技术路线的整合和应用,模型得以不断提高其对复杂情境的解析能力,从而在面对各种隐喻、讽刺、文化差异等非字面意义的文本时,能够提供更为精准和深入的分析。

4.6 自监督学习与强化学习

利用自监督学习让模型自己发现并学习新的模式,结合强化学习技术,根据用户反馈或模拟环境的奖励机制来调整模型的行为,使其更好地适应实际应用需求。

自监督学习和强化学习是两种互补的学习范式,它们都能帮助模型在缺乏大量标注数据的情况下提升学习效能,并适应实际应用需求。

自监督学习

  • 主要通过设计巧妙的 pretext tasks(预任务)来训练模型,例如掩码语言模型(Masked Language Model, MLM)会让模型预测被遮盖掉的词汇,或者是利用句子的旋转(Sentence Rotation)来让模型学习句子之间的顺序关系等。模型通过解决这些预设任务,可以自行发现并学习到语言中的底层结构和模式,从而提升其语言理解能力。

强化学习

  • 强化学习关注于如何通过与环境的交互,学习到最优的行为策略。在自然语言处理任务中,环境可以是用户的反馈、对话系统、游戏或者其他可以产生奖励信号的情境。
  • 模型通过执行动作(如生成文本、做出决策等)并观察结果,根据接收到的奖励信号(正面反馈、点击率、满意度等)来调整自身的策略,以期在未来获得更大的累积奖励,从而适应实际应用中的各种复杂需求。

       将自监督学习与强化学习结合起来,可以在模型训练的不同阶段发挥各自优势。自监督学习帮助模型在大规模无标注数据上学习基本的语义和语法结构,而强化学习则能在具体应用环境中,通过与用户的交互和即时反馈来进一步优化模型的行为和输出,使其更好地满足实际需求。例如,对话机器人既可以先通过自监督学习掌握基本的对话能力,随后在与用户的实际交流中,通过强化学习不断优化其回应质量和用户体验。

       这一阶段的目的是为了确保模型在面对复杂且专业的应用场景时,能够超越通用水平,实现更加贴近人类专家级的理解和生成能力。

5.其他重要的“淬炼”

在大规模语言模型的训练过程中,还有其他一些重要的阶段和技术:

  1. 提示学习(Prompt Learning / Prompt Tuning)

    在某些情况下,模型不直接微调整个模型的参数,而是只调整一个小型的提示向量(prompt embeddings),这样可以保留预训练模型的知识同时针对特定任务进行适应。
  2. 连续微调(Continual Fine-tuning / Progressive Fine-tuning)

    这种方法允许模型在多个相关任务上顺序微调,而不必每次重新从头开始,旨在避免灾难性遗忘(catastrophic forgetting),即模型在学习新任务时忘记已学过的旧任务知识。
  3. 多任务学习(Multi-task Learning)

    在单个训练过程中,模型同时学习处理多个相关的NLP任务,共享底层参数结构,这可以帮助模型提取跨任务的通用语言特征。
  4. 元学习(Meta-Learning)

    通过设计模型使其快速适应新任务的能力,即使只有少量样本也能高效地学习和泛化。
  5. 知识注入(Knowledge Injection)

    将外部知识库中的信息融入模型,比如通过实体链接、知识图谱融合或者直接将事实编码进模型权重。
  6. 领域适应(Domain Adaptation)

    如果模型需要应用于特定领域,如医疗、法律或电商,那么可能会有一个专门针对特定领域数据进行的训练阶段。
  7. 混合学习(Mix-in Training)

    在训练过程中结合多个数据源或多个模型的输出,从而增强模型的表现力和鲁棒性。
  8. 半监督学习(Semi-supervised Learning)

    利用大量的未标注数据与有限的标注数据相结合进行训练,特别是在大规模预训练阶段非常有效。
  9. 自我监督学习(Self-Supervised Learning)

    设计巧妙的代理任务(proxy task)帮助模型从无标签文本数据中学习语言结构和含义,如BERT的遮蔽语言模型(Masked Language Model)任务。
  10. 联合训练(Co-Training)

    同时训练多个模型,互相补充对方不足之处,协同提升整体性能。

       以上每个阶段都是为了进一步提升模型在不同情境下的表现力、效率和准确性,并且随着技术的发展,新的训练策略和技术也在不断涌现。

  • 10
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值