【ChatGPT】大语言模型在医学领域的应用 | Winning Insights

大语言模型在医学领域的应用

大语言模型(Large language models, LLMs)是一种人工智能系统,它使用神经网络架构在大量文本数据上训练,预测给定的上下文中可能出现的单词或短语,生成连贯、流畅的文本。大语言模型可以在与人类能力几乎无法区分的水平上回答问题、总结、转述和翻译文本,这引发了人们对其医疗领域应用的无尽想象和谨慎担忧。

本文旨在探讨医学大语言模型,基于多篇发表于国外顶级期刊和具有代表性的学术文献编译,归纳梳理现有的医学大语言模型,并讨论其在临床实践、医学教育和医学研究等的应用场景,以及它存在的挑战和可能的解决之道。

img

引言

近年来,通用大语言模型如PaLM 、LLaMA 、GPTs和ChatGLM等发展迅速。受其启发,一些研究者通过从零开始预训练、或从现有的通用大型语言模型微调,或直接通过提示使通用大型语言模型适用于医疗领域。基于上述方式,研发出大量医学大语言模型。

2023年12月11日,Hongjian Zhou等人发表的《A Survey of Large Language Models in Medicine: Principles, Applications, and Challenges》总结了目前可用的32个医学大语言模型,并梳理了各个医学大语言模型的参数量、数据规模和数据来源。例如,MedPaLM-2是通过医学专业人士开发指令数据来微调PaLM而构建的,其数据来源于MultiMedQA,涵盖193k的医学问答,训练参数达到340B。

大语言模型的医学应用

Harsha Nori、Karan Singhal的研究分别表明,ChatGPT已在美国医学执照考试(USMLE)中取得了及格水平的成绩,MedPaLM和MedPaLM2在美国医学执照考试中取得了与人类专家相媲美的分数。当然,临床实践与正确回答医学考试问题不能等同,目前大语言模型尚未准备取代医生。Jan Clusmann等人发表的《The Future Landscape of Large Language Models in Medicine》总结了大语言模型在医学中的应用主要可分为临床实践、医学教育和医学研究三类。大语言模型的医学应用场景如图所示,本章中大部分应用源自Jan Clusmann的文章,部分非此文提及的应用已说明来源。

img
大语言模型的医学应用场景

1、临床实践

1) 医学知识问答与推理

医学大语言模型具备丰富的语义级医学知识,因此其可进行医学知识问答与推理,为患者或医生提出临床建议。

img

ChatGPT临床实践应用示例

2) 翻译、扩充与提炼

大语言模型可提供多种语言的快速准确翻译,还可将医学术语翻译成通俗易懂的日常语言,帮助医患双方有效沟通,提高患者依从性。

服务患有语言障碍的特殊人群:在《Large Language Models in Neurology Research and Future Practice》中提到,针对患有语言障碍的特殊人群,大语言模型可以利用上下文预测能力填补患者因记忆丧失、表达性失语症或对话参与度差而导致的表述空缺,改善患者与亲人、医护人员的沟通。

快 速 提 炼 总 结 生 成 出 院 小 结:《Large Language Models in Medicine》表明,在患者出院场景中,大语言模型可代替医生快速提炼患者住院期间的病情信息、治疗情况,生成出院小结,减轻临床医生的工作负担。

3) 文书工作和语音转文字

大语言模型可帮助生成更简洁和标准化的文书,还可将非结构化信息转换为结构化文档,从而简化临床文书工作。大语言模型还支持语音转文字,自动将口语转换成书面语言,减轻临床医生在记录过程中的负担。

4) 临床报告生成

《A Survey of Large Language Models in Medicine:Principles,Applications,and Challenges》 文 中 提 到,大多数用于临床报告生成的医学大语言模型主要是ChatCAD,这是一种将基于视觉的计算机辅助诊断(CAD)与基于文本的大语言模型相结合的方案,已被证明可将最先进的报告生成方法的诊断性能得分提高 16.42%。在该方案中,CAD 将根据医学图像生成一些基本的基于文本的提示,然后大语言模型将 CAD 的输出与其他输入(如报告格式)结合起来,生成正式的临床报告。

5) 评估、预测与康复训练

《Large Language Models in Neurology Research and Future Practice》文中提到,当大语言模型接受大量帕金森病、亨廷顿病高风险或阿尔茨海默病高风险患者的语言数据训练后,这些模型可学会分析个人的语音、声学和语言模式,并可检测出他们随时间流逝复杂而微妙的变化,有助于实现病情评估和疾病预测。同时,基于患者语言能力的数据,大语言模型可生成与患者当前认知水平相匹配的文字游戏或讲故事活动,并跟踪患者随时间的表现,调整任务难度,实现动态的认知康复训练。

2、医学研究

1) 获取科学知识

随着科学研究快速而持续的发展,学术出版物的数量不断增加。大语言模型可帮助总结科学概念和现有研究、分析大量临床文本数据,显著提升手动整理的效率和准确率,并通过揭示文献间可能存在的联系,帮助发现新的研究方向。

img

ChatGPT医学研究应用示例

2) 科技论文写作

大语言模型在产生和改编文本内容、语言和风格方面的潜力可用于科技论文写作,可以减轻论文写作、批判性评价和同行评审等大部分科研工作的负担。例如,大语言模型生成的论文摘要能够达到近乎人类撰写的程度。

3) 计算机编程

除了书面语言,大语言模型还可接受各种编程语言的代码培训。在数据科学和生物信息学领域中,大语言模型可用于代码调试和简化、不同编程语言的转换,以及从自然语言输入中推导代码。这为临床医生和其他缺乏编程专业知识的人提供了一套编程工具集。

3、医学教育

1) 个性化教育

大语言模型适合作为个性化教学助理,因为它们可以提供令人信服的总结、演示、翻译、解释、循序渐进的指导和情境化主题,以及可定制的输出深度、语气和风格。例如,它们可将复杂的概念分解为业余水平,提供关于学术主题的、附有合理解释的个性化反馈,或是辅助复习和模拟考试。

img

ChatGPT医学教育应用示例

2) 交互式学习

大语言模型可用于创建交互式、沉浸式的学习模拟。例如,学生可使用大语言模型模拟与患者的对话,从而练习记录患者病史或进行评估诊断、制定治疗计划。正如《Large Language Models in Medicine》所提及的,Duolingo 是一个免费语言学习平台,它将 GPT-4 应用于角色扮演和答案解释功能,以提高在线学习的互动性。又比如,Webb 在《Using ChatGPT to Teach Emergency Physicians How to Break Bad News》中通过 ChatGPT 模拟患者在披露新癌症诊断期间的反应和对话来提升急诊医生的沟通技能(特别是传递坏消息时)。

3) AI生成教学图像

Virve Koljonen 在《What Could We Make of AI in Plastic Surgery Education》中讨论了利用 DALL·E 2 由文字生成临床整形外科的三类教学图像:皮下肿瘤、伤口和皮肤肿瘤,他发现 AI 生成的图像在不同类别中具有不同的临床准确性,最准确的是软组织肿瘤,最不准确的是伤口。

4) 大语言模型使用培训

鉴于大语言模型的广泛应用,所有学生都应该接受大语言模型的使用培训。提示工程的学习尤为重要,即学会准确地表达以实现期望的输出,以免生成结果不准确或不符合预期,可能会对患者造成伤害。学生也应通过培训认识到大语言模型存在局限性。

img

大语言模型在医学中的挑战及应对

尽管极具潜力,但在医学中应用大语言模型仍需面对重重挑战。《A Survey of Large Language Models in Medicine: Progress, Application, and Challenge》总结了大语言模型在医学中主要的挑战以及可能的解决方案如下:

1、幻觉/准确性

大语言模型的幻觉是指生成的输出包含不准确或不真实信息的现象。当将大语言模型应用到医学领域时,幻觉会导致传播不正确的医学信息,从而导致误诊、不当治疗和有害的患者教育。鉴于医学领域的关键性,确保大语言模型输出的准确性至关重要。

可能的解决方案:目前缓解幻觉的解决方案可分为训练时间校正、生成时间校正和检索增强校正。训练时间校正旨在通过调整模型权重来减轻幻觉,从而降低生成幻觉输出的概率。生成时间校正是在大语言模型推论中添加“推理”过程,以确保可靠性。检索增强校正方法利用外部资源来帮助减轻幻觉。

2、缺乏评估基准和指标

随着大语言模型能力的不断增强,当前的基准和指标往往无法评估大语言模型的整体能力,特别是在医疗领域。当前的基准,如 MedQA 和 MedMCQA,提供了广泛覆盖的问答任务,但未具备评估大语言模型的可信度、有用性、可解释性和忠实性等的重要指标。

可 能 的 解 决 方 案:HealthSearchQA 为 评 估 大 语 言 模型在医疗领域的能力提供了更加符合人类标准的基准。TruthfulQA 和 HaluEval 等基准具备了更多大语言模型特有的评估指标,但未能涵盖医疗领域。未来有必要研究开发更多医疗领域大语言模型特有的基准和指标。

3、医疗数据限制

与通用大语言模型的训练数据集相比,医疗领域当前的数据集相对较小。尽管医疗健康数据量很多,但大多数都需要经过广泛的伦理、法律和隐私程序才能访问。此外,这些数据通常没有标签,由于缺乏人类专家资源和误差范围小导致利用这些数据存在困难。这使得大语言模型在具有广泛数据覆盖的开放基准上表现优异,但在现实的医疗任务上却不够亮眼。

可能的解决方案:目前最先进的方法倾向于在较小的开源数据集上进行微调,以提高模型的领域特定性能。另一种方案是使用大语言模型生成高质量的合成数据集,以扩大知识覆盖面。然而有研究发现,在生成的数据集上进行训练会导致“模型失忆”。因此,未来需要研究验证医疗大语言模型使用合成数据的有效性。

4、知识更新

大语言模型接受大量数据训练以学习知识。当需要知识更新时,会出现两个问题:如何使大语言模型“忘记”旧知识——几乎不可能从训练数据中删除所有“旧知识”,新旧知识之间的差异可能会导致意想不到的关联和偏见;如何及时添加新知识,确保模型实时更新?这些问题对医疗领域使用大语言模型产生了重大障碍。

可能的解决方案:当前的解决方案可分为模型编辑和检索增强生成。模型编辑是指通过修改模型的参数来改变模型的知识,此方法不具有通用性,它的效果因不同的模型架构而异。检索增强生成方案是在模型推理期间提供外部知识源作为提示。

5、伦理、法律和安全问题

人们对在医疗领域使用大语言模型的担忧大都和伦理、问责与安全相关。大语言模型的回答可能是危险的、有偏见的或者冒犯性的。大语言模型用于医疗实践的责任认定也颇具挑战性。此外,Li 和 Shen 等人发现,指令注入攻击可能会导致大语言模型从其训练数据中泄露个人信息,这是一个重大漏洞。

可能的解决方案:虽然还没有解决方案,但已有学者在研究产生这些问题的原因。此外,政府和公司正在加大力度规范和监督人工智能在医疗保健和医药等领域的应用。

img

展 望

大语言模型在自然语言处理领域取得巨大进展,为医学领域的应用开辟了新的机遇。尤其是在结合多模态等插件工具的新应用中,大语言模型展现出了巨大的潜力。然而,大语言模型在医学中的挑战也引起了专家和社会的广泛关注。以解决这些问题为前提,经过验证的大语言模型医学应用可能会极大地解放医疗健康产业从业者的生产力。

img

体 会

笔者在整理编译相关研究文献时,深切感受到了大语言模型的发展日新月异。自OpenAI 发布 ChatGPT 以来,国内外掀起了大语言模型的研发浪潮。千帆竞发,百舸争流,众多国内研究团队推出了自己的医学大语言模型,如 WiNGPT、BianQue、HuatuoGPT 和 MedGPT 等 等。值 得 一 提 的 是,医 学 大 语 言 模 型 不 仅 局 限 于 西 医 领 域, 诸 如 岐 黄 问 道、Zhongjing、BenTsao 和 ShenNong-TCM 等中医大模型也在积极探索中医药的数字化、智能化的发展路径。此外,大语言模型在医学领域的应用性能也在持续提升。从 GPT-3.5 到GPT-4,仅仅用了三个多月的时间,其回答皮肤科问题的正确率显著提高。GPT-4 在美国医学执照考试中的表现也明显优于GPT-3.5。这充分证明了大语言模型在医疗领域的应用潜力。

2023 年 12 月,ChatGPT 成为著名学术期刊《Nature》2023 年度十大人物,成为有史以来首次入选该榜单的计算机程序,这是对人工智能系统在科学发展中所发挥作用的认可。我们相信,大语言模型已成为一项可能彻底改变生活方式的新技术,在医疗实践、医学教育和医学研究之外,有望在健康管理、疾病预防、药品研发、康养护理、医疗保险等领域开辟更多应用场景。我们期待看到大语言模型在医疗领域的广泛应用,推动形成“技术 - 应用 - 产业”的良性循环。

如何学习大模型

现在社会上大模型越来越普及了,已经有很多人都想往这里面扎,但是却找不到适合的方法去学习。

作为一名资深码农,初入大模型时也吃了很多亏,踩了无数坑。现在我想把我的经验和知识分享给你们,帮助你们学习AI大模型,能够解决你们学习中的困难。

我已将重要的AI大模型资料包括市面上AI大模型各大白皮书、AGI大模型系统学习路线、AI大模型视频教程、实战学习,等录播视频免费分享出来,需要的小伙伴可以扫取。

一、AGI大模型系统学习路线

很多人学习大模型的时候没有方向,东学一点西学一点,像只无头苍蝇乱撞,我下面分享的这个学习路线希望能够帮助到你们学习AI大模型。

在这里插入图片描述

二、AI大模型视频教程

在这里插入图片描述

三、AI大模型各大学习书籍

在这里插入图片描述

四、AI大模型各大场景实战案例

在这里插入图片描述

五、结束语

学习AI大模型是当前科技发展的趋势,它不仅能够为我们提供更多的机会和挑战,还能够让我们更好地理解和应用人工智能技术。通过学习AI大模型,我们可以深入了解深度学习、神经网络等核心概念,并将其应用于自然语言处理、计算机视觉、语音识别等领域。同时,掌握AI大模型还能够为我们的职业发展增添竞争力,成为未来技术领域的领导者。

再者,学习AI大模型也能为我们自己创造更多的价值,提供更多的岗位以及副业创收,让自己的生活更上一层楼。

因此,学习AI大模型是一项有前景且值得投入的时间和精力的重要选择。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值