2021.04.08丨RNA-seq消除批量效应

摘要

        按照正常情况,送去测序的样品最好是同一个批次上机测序,避免外部干扰。最近接到一个项目,拿到手的数据就是分了四批。组长提醒我研究一下批量效应的处理方式。因此,这里总结一下批量处理的分析流程。

环境配置

        R版本:3.6.1

        依赖R包:limma

使用代码:

library(limma) #调用limma包,线性分析主要包
data <- read.table("all_count.txt",header = T, sep = "\t", row.names = 1) #输入定量后的count值
data <- as.matrix(data) # 转化为矩阵
group <- read.table("group.list",header = T, sep = "\t", row.names = 1) #输入样品对应的批次
batch = group$batch #读取批次列
modcombat = model.matrix(~1,data = group) #生成批次设计矩阵,不懂可以百度model.matrix()函数
all_count_cor <- removeBatchEffect(data, batch = batch ,design = modcombat) #消除
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

穆易青

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值