1. 数据获取的创新方法
在大气激光通信中,基于深度学习的无波前自适应光学技术对数据的需求尤为关键。然而,高质量且大规模的湍流数据获取一直是一个难题。传统的湍流模拟方法,如Zernike多项式和功率谱反演法,虽然在一定程度上能够模拟湍流效应,但存在局限性,难以完全反映真实通信环境中的复杂情况。
为了克服这一难题,本文提出了一种基于生成对抗网络(GAN)的数据生成方法。GAN由生成器和判别器两部分组成,通过相互竞争和对抗的方式,生成器能够学习到真实数据的分布,并生成与真实数据高度相似的湍流数据。这种方法不仅克服了传统湍流模拟方法的局限性,还能够生成大量符合实际通信情况的湍流数据。
为了验证该方法的有效性,本文比较了所提出方法生成的湍流数据和被拟合的真实湍流数据之间的Frechet距离(FD)和相位结构函数(PSF)。结果显示,基于GAN的数据生成方法能够有效学习真实湍流的分布,生成的湍流数据与真实数据在统计特性上高度一致。
此外,本文还通过仿真实验证明了该方法在数据扩充方面的优势。在基于深度学习的轨道角动量(OAM)模式识别任务中,使用该方法生成的湍流数据进行训练,可以显著提高模式识别的准确率。具体而言,模式识别的准确率从53%提高到96%,从而在一定程度上缓解了基于深度学习无波前自适应光学技术的数据获取问题。
2. 模型构建的优化策略
在模型构建方面,本文首先分析了深度学习的基本原理以及网络模型构建的典型思路,并提出了基于卷积神经网络(CNN)的波前恢复算法。CNN具有强大的特征提取能力&#