方向导数与拉普拉斯算子的旋转不变性

本文介绍了方向导数的概念,包括其与偏导数的关系,并详细证明了拉普拉斯算子的旋转不变性,解释了这一特性在不同坐标系下的等价性。
摘要由CSDN通过智能技术生成

一、方向导数

  在探讨拉普拉斯算子的旋转不变性之前,先来说说方向导数,定义如下:

  考虑函数 f ( x , y ) \small f(x,y) f(x,y) f \small f f 在点 P 0 ( x 0 , y 0 ) \small P_0(x_0,y_0) P0(x0,y0) 的某邻域 U ( P 0 ) \small U(P_0) U(P0) 内有定义. 对于给定的方向向量 l = ( cos ⁡ ⟨ l , x ⟩ , sin ⁡ ⟨ l , x ⟩ ) \small l=(\cos\langle l,x\rangle,\sin\langle l,x\rangle) l=(cosl,x,sinl,x⟩) ( ⟨ l , x ⟩ \langle l,x\rangle l,x 表示 l l l x x x 轴之间的夹角), P \small P P 为邻域中一点,且 P 0 P → = ρ   l \small \overrightarrow{P_0P}=\rho\,l P0P =ρl ρ > 0 \rho>0 ρ>0,表示 P \small P P P 0 \small P_0 P0 两点间的距离. 若极限
lim ⁡ ρ → 0 + f ( P ) − f ( P 0 ) ρ \lim_{\rho\to0^+}\frac{f(P)-f(P_0)}{\rho} ρ0+limρf(P)f(P0)

存在,则称此极限为函数 f \small f f 在点 P 0 \small P_0 P0 沿方向 l l l方向导数,记作
∂ f ∂ l ∣ P 0    o r    f l ( P 0 ) \frac{\partial f}{\partial l}\Big|_{P_0} \,\,or\,\,f_l(P_0) lf P0orfl(P0)

方向导数与偏导数

  直觉性较强的读者应该能够看出:若 l l l x x x 轴正向,方向导数就是 f x ( P 0 ) \small f_x(P_0) fx(P0);若 l l l y y y 轴正向,方向导数就是 f y ( P 0 ) \small f_y(P_0) fy(P0).

  那能否通过偏导数 f x ( P 0 ) , f y ( P 0 ) \small f_x(P_0),f_y(P_0) fx(P0),fy(P0) 来表示方向导数呢?

  答案是肯定的,有如下定理:

  设 f \small f f 在点 P 0 ( x 0 , y 0 ) \small P_0(x_0,y_0) P0(x0,y0) 处可微,则 f \small f f 在点 P 0 \small P_0 P0 沿任一方向 l = ( cos ⁡ ⟨ l , x ⟩ , sin ⁡ ⟨ l , x ⟩ ) \small l=(\cos\langle l,x\rangle,\sin\langle l,x\rangle) l=(cosl,x,sinl,x⟩) 的方向导数均存在,且满足
∂ f ∂ l = ∂ f ∂ x cos ⁡ ⟨ l , x ⟩ + ∂ f ∂ y sin ⁡ ⟨ l , x ⟩ \frac{\partial f}{\partial l}=\frac{\partial f}{\partial x}\cos\langle l,x\rangle+\frac{\partial f}{\partial y}\sin\langle l,x\rangle lf=xfcosl,x+yfsinl,x

  这个定理的证明有两种思路,不知客官喜欢哪一种?

证法 1: 根据定义

  设 P ( x , y ) \small P(x,y) P(x,y) 位于邻域中,且满足 P 0 P → = ρ   l ,   ρ > 0 \small \overrightarrow{P_0P}=\rho\,l,\,\rho>0 P0P =ρl,ρ>0,于是
{ x − x 0 = Δ x = ρ cos ⁡ ⟨ l , x ⟩ y − y 0 = Δ y = ρ sin ⁡ ⟨ l , x ⟩ (*) \begin{cases} x-x_0=\Delta x=\rho\cos\langle l,x \rangle\\ y-y_0=\Delta y=\rho\sin\langle l,x \rangle \tag{*} \end{cases} {xx0=Δx=ρcosl,xyy0=Δy=ρsinl,x(*)

f f f 在点 P 0 \small P_0 P0 处可微,知

f ( P ) − f ( P 0 ) = f x ( P 0 ) Δ x + f y ( P 0 ) Δ y + o ( ρ ) f(P)-f(P_0)=f_x(P_0)\Delta x+f_y(P_0)\Delta y+o(\rho) f(P)f(P0)=fx(P0)Δx+fy(P0)Δy+o(ρ)

两边同除 ρ \rho ρ,并根据 ( ∗ ) (*) () 式,得

f ( P ) − f ( P 0 ) ρ = f x ( P 0 ) Δ x ρ + f y ( P 0 ) Δ y ρ + o ( ρ ) ρ = f x ( P 0 ) cos ⁡ ⟨ l , x ⟩ + f y ( P 0 ) sin ⁡ ⟨ l , x ⟩ + o ( ρ ) ρ \begin{aligned} \frac{f(P)-f(P_0)}{\rho}&= f_x(P_0)\frac{\Delta x}{\rho}+f_y(P_0)\frac{\Delta y}{\rho}+\frac{o(\rho)}{\rho}\\&= f_x(P_0)\cos\langle l,x \rangle+f_y(P_0)\sin\langle l,x \rangle+\frac{o(\rho)}{\rho} \end{aligned} ρf(P)f(P0)=fx(P0)ρΔx+fy(P0)ρΔy+ρo(ρ)=fx(P0)cosl,x+fy(P0)sinl,x+ρo(ρ)

两边取极限 ρ → 0 + \rho\to 0^+ ρ0+,则
f l ( P 0 ) = lim ⁡ ρ → 0 + f ( P ) − f ( P 0 ) ρ = f x ( P 0 ) cos ⁡ ⟨ l , x ⟩ + f y ( P 0 ) sin ⁡ ⟨ l , x ⟩ f_l(P_0)=\lim_{\rho\to0^+}\frac{f(P)-f(P_0)}{\rho}=f_x(P_0)\cos\langle l,x \rangle+f_y(P_0)\sin\langle l,x \rangle fl(P0)=ρ0+limρf(P)f(P0)=fx(P0)cosl,x+fy(P0)sinl,x


证法 2: 根据坐标旋转变换

  将原坐标系 x O y \small xOy xOy 旋转角度 ϕ \phi ϕ 得到新坐标系 x ′ O y ′ \small x'Oy' xOy,考虑点 P \small P P. 向量 O P → \small \overrightarrow{OP} OP 长度为 r r r,与 x , x ′ x,x' x,x 轴的夹角分别为 θ , θ ′ \small \theta,\theta' θ,θ,显然有
θ ′ = θ − ϕ \theta'=\theta-\phi θ=θϕ

则点 P \small P P 在原坐标系下的坐标为
{ x = r cos ⁡ θ y = r sin ⁡ θ \begin{cases}x=r\cos\theta\\y=r\sin\theta\end{cases} {x=rcosθy=rsinθ

在新坐标系下的坐标为
{ x ′ = r cos ⁡ θ ′ =    r cos ⁡ ( θ − ϕ ) = r ( cos ⁡ θ cos ⁡ ϕ + sin ⁡ θ sin ⁡ ϕ ) = x cos ⁡ ϕ + y sin ⁡ ϕ y ′ = r sin ⁡ θ ′ =    r sin ⁡ ( θ − ϕ ) = r ( sin ⁡ θ cos ⁡ ϕ − cos ⁡ θ sin ⁡ ϕ ) = − x sin ⁡ ϕ + y cos ⁡ ϕ \begin{cases} \begin{aligned} x'=r\cos\theta'=&\,\,r\cos(\theta-\phi)=r(\cos\theta\cos\phi+\sin\theta\sin\phi)=x\cos\phi+y\sin\phi\\ y'=r\sin\theta'=&\,\,r\sin(\theta-\phi)=r(\sin\theta\cos\phi-\cos\theta\sin\phi)=-x\sin\phi+y\cos\phi \end{aligned} \end{cases} {x=rcosθ=y=rsinθ=rcos(θϕ)=r(cosθcosϕ+sinθsinϕ)=xcosϕ+ysinϕrsin(θϕ)=r(sinθcosϕcosθsinϕ)=xsinϕ+ycosϕ

化为矩阵形式
( x ′ y ′ ) = ( cos ⁡ ϕ sin ⁡ ϕ − sin ⁡ ϕ cos ⁡ ϕ ) ( x y ) \begin{pmatrix}x'\\y'\end{pmatrix}= \begin{pmatrix} \cos\phi & \sin\phi\\ -\sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix}x\\y\end{pmatrix} (xy)=(cosϕsinϕsinϕcosϕ)(xy)

同理可推出(或者两边左乘旋转矩阵的逆),可得
( x y ) = ( cos ⁡ ϕ − sin ⁡ ϕ sin ⁡ ϕ cos ⁡ ϕ ) ( x ′ y ′ ) \begin{pmatrix}x\\y\end{pmatrix}= \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix}x'\\y'\end{pmatrix} (xy)=(cosϕsinϕsinϕcosϕ)(xy)

所以
∂ x ∂ x ′ = cos ⁡ ϕ ,    ∂ y ∂ x ′ = sin ⁡ ϕ \frac{\partial x}{\partial x'}=\cos\phi,\,\,\frac{\partial y}{\partial x'}=\sin\phi xx=cosϕ,xy=sinϕ
考虑函数 f ( x , y ) \small f(x,y) f(x,y) 沿 x ′ x' x 方向的方向导数,由链式法则
∂ f ∂ x ′ = ∂ f ∂ x ∂ x ∂ x ′ + ∂ f ∂ y ∂ y ∂ x ′ = ∂ f ∂ x cos ⁡ ϕ + ∂ f ∂ y sin ⁡ ϕ \begin{aligned} \frac{\partial f}{\partial x'}&= \frac{\partial f}{\partial x}\frac{\partial x}{\partial x'}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial x'}\\ &=\frac{\partial f}{\partial x}\cos\phi+\frac{\partial f}{\partial y}\sin\phi \end{aligned} xf=xfxx+yfxy=xfcosϕ+yfsinϕ同理可得函数 f \small f f 沿 y ′ y' y 方向的方向导数
∂ f ∂ y ′ = − ∂ f ∂ x sin ⁡ ϕ + ∂ f ∂ y cos ⁡ ϕ \frac{\partial f}{\partial y'}=-\frac{\partial f}{\partial x}\sin\phi+\frac{\partial f}{\partial y}\cos\phi yf=xfsinϕ+yfcosϕ

∂ f / ∂ y ′ \partial f/\partial y' f/y 进行变形
∂ f ∂ y ′ = ∂ f ∂ x cos ⁡ ( ϕ + π / 2 ) + ∂ f ∂ y sin ⁡ ( ϕ + π / 2 ) \frac{\partial f}{\partial y'}=\frac{\partial f}{\partial x}\cos(\phi+\pi/2)+\frac{\partial f}{\partial y}\sin(\phi+\pi/2) yf=xfcos(ϕ+π/2)+yfsin(ϕ+π/2)
其中 ( ϕ + π / 2 ) (\phi+\pi/2) (ϕ+π/2) y ′ y' y 轴与 x x x 轴之间的夹角,与定理结论相符.

  有人会有这样的疑问:假如 x ′ , y ′ x',y' x,y 是原坐标系先旋转后平移或者先平移后旋转得到的,结果是否不变?

  答案是肯定的,因为
d ( x ′ + a ) d x ′ = 1 = d ( y ′ + b ) y ′ \frac{d(x'+a)}{dx'}=1=\frac{d(y'+b)}{y'} dxd(x+a)=1=yd(y+b)( a , b a,b a,b 为常数),不改变链式法则的结果.


二、拉普拉斯算子的旋转不变性

拉普拉斯算子
∇ f = Δ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 \nabla f= \Delta^2 f=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2} f=Δ2f=x22f+y22f
拉普拉斯算子具有旋转不变性,emm,这该怎么理解呢?

先说下我的看法:

  将原坐标系 x O y \small xOy xOy 进行旋转,得到新的坐标系 x ′ O y ′ \small x'Oy' xOy,则在新坐标系下的拉普拉斯算子与原来的相同,即
∂ 2 f ∂ x ′ 2 + ∂ 2 f ∂ y ′ 2 = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 \frac{\partial^2f}{\partial x'^2}+\frac{\partial^2f}{\partial y'^2} = \frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2} x′22f+y′22f=x22f+y22f称之为拉普拉斯算子的 旋转不变性.

  其实一般算子的旋转不变性也是这样定义的,比如我们可以自己造一个算子,叫作模长算子,容易验证,它也具有旋转不变性.

  就算写到这里,我对拉普拉斯算子的 旋转不变性 仍表示怀疑,因为还没有自己把它证出来,下面就让我们试着证一下!

已知
∂ g ∂ x ′ = ∂ g ∂ x cos ⁡ ϕ + ∂ g ∂ y sin ⁡ ϕ (1) \frac{\partial g}{\partial x'}= \frac{\partial g}{\partial x}\cos\phi+\frac{\partial g} {\partial y}\sin\phi \tag{1} xg=xgcosϕ+ygsinϕ(1) ∂ g ∂ y ′ = − ∂ g ∂ x sin ⁡ ϕ + ∂ g ∂ y cos ⁡ ϕ (2) \frac{\partial g}{\partial y'}= -\frac{\partial g}{\partial x}\sin\phi+\frac{\partial g}{\partial y}\cos\phi \tag{2} yg=xgsinϕ+ygcosϕ(2)

g = ∂ f ∂ x ′ \displaystyle g=\frac{\partial f}{\partial x'} g=xf 代入 ( 1 ) \small (1) (1) 式,得

∂ 2 f ∂ x ′ 2 = ∂ ∂ x ′ ( ∂ f ∂ x ′ ) = ∂ ∂ x ( ∂ f ∂ x ′ ) cos ⁡ ϕ + ∂ ∂ y ( ∂ f ∂ x ′ ) sin ⁡ ϕ \frac{\partial^2 f}{\partial x'^2}= \frac{\partial}{\partial x'}(\frac{\partial f}{\partial x'})= \frac{\partial}{\partial x}(\frac{\partial f}{\partial x'})\cos\phi+\frac{\partial}{\partial y}(\frac{\partial f}{\partial x'})\sin\phi x′22f=x(xf)=x(xf)cosϕ+y(xf)sinϕ

( 1 ) \small (1) (1) 式中的 f f f 换成 g g g 代入上式,有
∂ 2 f ∂ x ′ 2 = ∂ ∂ x ( ∂ f ∂ x cos ⁡ ϕ + ∂ f ∂ y sin ⁡ ϕ ) cos ⁡ ϕ + ∂ ∂ y ( ∂ f ∂ x cos ⁡ ϕ + ∂ f ∂ y sin ⁡ ϕ ) sin ⁡ ϕ = ∂ 2 f ∂ x 2 cos ⁡ 2 ϕ + 2 ∂ 2 f ∂ x ∂ y sin ⁡ ϕ cos ⁡ ϕ + ∂ 2 f ∂ y 2 sin ⁡ 2 ϕ \begin{aligned} \frac{\partial^2 f}{\partial x'^2}&= \frac{\partial}{\partial x}\big(\frac{\partial f}{\partial x}\cos\phi+\frac{\partial f}{\partial y}\sin\phi\big)\cos\phi+ \frac{\partial}{\partial y}\big(\frac{\partial f}{\partial x}\cos\phi+\frac{\partial f}{\partial y}\sin\phi\big)\sin\phi\\&= \frac{\partial^2f}{\partial x^2}\cos^2\phi+2\frac{\partial^2f}{\partial x\partial y}\sin\phi\cos\phi+\frac{\partial^2f}{\partial y^2}\sin^2\phi \end{aligned} x′22f=x(xfcosϕ+yfsinϕ)cosϕ+y(xfcosϕ+yfsinϕ)sinϕ=x22fcos2ϕ+2xy2fsinϕcosϕ+y22fsin2ϕ同理
∂ 2 f ∂ y ′ 2 = ∂ ∂ y ′ ( ∂ f ∂ y ′ ) = − ∂ ∂ x ( ∂ f ∂ y ′ ) sin ⁡ ϕ + ∂ ∂ y ( ∂ f ∂ y ′ ) cos ⁡ ϕ = − ∂ ∂ x ( − ∂ f ∂ x sin ⁡ ϕ + ∂ f ∂ y cos ⁡ ϕ ) sin ⁡ ϕ + ∂ ∂ y ( − ∂ f ∂ x sin ⁡ ϕ + ∂ f ∂ y cos ⁡ ϕ ) cos ⁡ ϕ = ∂ 2 f ∂ x 2 sin ⁡ 2 ϕ − 2 ∂ 2 f ∂ x ∂ y sin ⁡ ϕ cos ⁡ ϕ + ∂ 2 f ∂ y 2 cos ⁡ 2 ϕ \begin{aligned} \frac{\partial^2 f}{\partial y'^2}&= \frac{\partial}{\partial y'}(\frac{\partial f}{\partial y'})\\&= -\frac{\partial}{\partial x}(\frac{\partial f}{\partial y'})\sin\phi+\frac{\partial}{\partial y}(\frac{\partial f}{\partial y'})\cos\phi\\&= -\frac{\partial}{\partial x}\big(-\frac{\partial f}{\partial x}\sin\phi+\frac{\partial f}{\partial y}\cos\phi\big)\sin\phi+\frac{\partial}{\partial y}\big(-\frac{\partial f}{\partial x}\sin\phi+\frac{\partial f}{\partial y}\cos\phi\big)\cos\phi\\&= \frac{\partial^2f}{\partial x^2}\sin^2\phi-2\frac{\partial^2f}{\partial x\partial y}\sin\phi\cos\phi+\frac{\partial^2f}{\partial y^2}\cos^2\phi \end{aligned} y′22f=y(yf)=x(yf)sinϕ+y(yf)cosϕ=x(xfsinϕ+yfcosϕ)sinϕ+y(xfsinϕ+yfcosϕ)cosϕ=x22fsin2ϕ2xy2fsinϕcosϕ+y22fcos2ϕ

所以
∂ 2 f ∂ x ′ 2 + ∂ 2 f ∂ y ′ 2 = ∂ 2 f ∂ x 2 ( cos ⁡ 2 ϕ + sin ⁡ 2 ϕ ) + ∂ 2 f ∂ y 2 ( sin ⁡ 2 ϕ + cos ⁡ 2 ϕ ) = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 \begin{aligned} \frac{\partial^2f}{\partial x'^2}+\frac{\partial^2f}{\partial y'^2} &= \frac{\partial^2f}{\partial x^2}(\cos^2\phi+\sin^2\phi)+\frac{\partial^2f}{\partial y^2}(\sin^2\phi+\cos^2\phi) \\&= \frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2} \end{aligned} x′22f+y′22f=x22f(cos2ϕ+sin2ϕ)+y22f(sin2ϕ+cos2ϕ)=x22f+y22f拉普拉斯算子具有方向不变性这一结论成立.

哈哈,这下我信了!



鸣谢!

参考文献:华东师范大学数学系. 数学分析(下册)[M]. 第四版. 北京:高等教育出版社,2010.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值