相机内参坐标系及其在MATLAB 中的表示

一、概述

本文主要介绍相机针孔模型的基本原理,包括相机坐标系、成像坐标系以及像素坐标系之间的转换关系——内参矩阵(Camera intrinsics),在此基础上介绍该矩阵在MATLAB中的表示以及与其他相关软件中的表示的异同,最后给出相关MATLAB中的相关类、函数的表示和使用方法。

二、相机模型

2.1 针孔模型

针孔相机模型是用于表示相机将三维坐标转化为平面坐标的最常用的模型,数学物理原理非常简单,各种相关书籍和文章中也多有详细的介绍,借用MATLAB帮助(《What Is Camera Calibration?》)中的图片,可以表示如下。
在这里插入图片描述
从世界坐标系转换到相机坐标系有一个旋转和平移叠加的过程,可以用一个正交矩阵表示,又称为相机的外参矩阵(Camera Extrinsics),该矩阵的参数与相机位姿和世界坐标系的定义有关,而与相机本身的参数(焦距、畸变等)无关,因此本文不作细述,这里主要讨论从相机坐标系下的物体点位置到成像和像素坐标系的转换关系。

2.2 相机坐标系到成像坐标系

从三维空间的点 P = ( X , Y , Z ) P=(X,Y,Z) P=(X,Y,Z)变换到成像平面的过程也称射影变换。该点到成像平面的距离为 f f f,将点P投影到成像坐标系(平面),利用相似三角形原理,可得:
{ x = f X Z y = f Y Z z = f \left\{ \begin{array}{l} x = f\frac{X}{Z} \\ y = f\frac{Y}{Z} \\ z = f \end{array} \right. x=fZXy=fZYz=f
其中 ( x , y ) (x,y) (x,y)为P点在成像坐标系下的坐标点。

2.3 成像平面坐标系到像素坐标系

成像坐标系的中心点通常在成像平面中心,而像素坐标系则通常在图像左上角,因此需要作平移,同时,像素坐标系和成像坐标系的下单位不同,因此还有缩放。综合如下:

将坐标 ( x ,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值