牛顿-欧拉递推动力学方程①

本文介绍了牛顿-欧拉动力学方程,通过动力学平衡方程分析机器人连杆的力和力矩。阐述了从力平衡方程和力矩平衡方程出发的递推算法,包括向外递推计算速度和加速度,向内递推计算力和力矩。同时,讨论了计及重力的情况,提供了关节力矩的计算方法,并给出了不同关节类型(转动和移动)的处理方式。
摘要由CSDN通过智能技术生成

牛顿—欧拉动力学方程是应用达朗伯原理将动力学问题转化为牛顿—欧拉形式的静力学平衡问题。即,当一非自由质点系运动时,作用于该质点系的主动力系、约束反力系与质点系的惯性力系在形式上组成一个平衡力系(在任何方向上的代数和为零)。

对于机器人的第i个连杆,由牛顿第二定律(力平衡方程)得作用于质心C的力为:

f ⃗ c i = d ( m i ν ⃗ c i ) d t = m i ν ⃗ ˙ c i \vec{f}_{ci}=\frac{d\left(m_i\vec{\nu}_{ci}\right)}{dt}=m_i\dot{\vec{\nu}}_{ci} f ci=dtd(miν ci)=miν ˙ci

式中, f ⃗ c i \vec{f}_{ci} f ci为在惯性系下作用在连杆i的质心
C处的合外力; ν ⃗ c i \vec{\nu}_{ci} ν ci ν ⃗ ˙ c i \dot{\vec{\nu}}_{ci} ν ˙ci分别为在惯性系下连杆i的质心C处的线速度和线加速度。

由欧拉方程(力矩平衡方程)得作用于质心C的力矩为:
n ⃗ c i = d ( I ˉ ⃗ c i ω ⃗ i ) d t = I ˉ ⃗ c i ω ˉ ˙ i + ω ⃗ i × ( I ˉ ⃗ c i ω ˉ i ) \vec{n}_{ci}=\frac{d\left(\vec{\bar{I}}_{ci}\vec{\omega}_i\right)}{dt}=\vec{\bar{I}}_{ci}\dot{\bar{\omega}}_i+\vec{\omega}_i\times\left(\vec{\bar{I}}_{ci}\bar{\omega}_i\right) n ci=dtd(Iˉ ciω i)=Iˉ ciωˉ˙i+ω i×(Iˉ ciωˉi)

式中, n ⃗ c i \vec{n}_{ci} n ci为作用于连杆i的质心C处的合外力矩; I ˉ ⃗ c i \vec{\bar{I}}_{ci} Iˉ ci为连杆i在惯性坐标系下对质心C的惯性张量; ω ˉ i \bar{\omega}_i ωˉi为连杆i在惯性系下的角速度。

力和力矩的递推算式

在这里插入图片描述

1 第i个连杆的静力平衡方程

i f ⃗ i − i f ⃗ i + 1 + m i i g ⃗ = 0 ^i\vec{f}_i-^i\vec{f}_{i+1}+m_i^i\vec{g}=0 if iif i+1+miig =0
(注:对于连杆i,受到 i f ⃗ i + 1 {}^i\vec{f}_{i+1} if i+1的作用为 − i f ⃗ i + 1 {-}^i\vec{f}_{i+1} if i+1

i n ⃗ i − i n ⃗ i + 1 − i p ⃗ i + 1 × i f ⃗ i + 1 + i r ⃗ c i × m i i g ⃗ = 0 ^i\vec{n}_i-^i\vec{n}_{i+1}-^i\vec{p}_{i+1}\times^i\vec{f}_{i+1}+^i\vec{r}_{ci}\times m_i^i\vec{g}=0 in iin i+1ip i+1×if i+1+ir ci×miig =0
(对 O i O_i Oi取矩)

式中, i f ⃗ i {}^i\vec{f}_{i} if i i f ⃗ i + 1 {}^i\vec{f}_{i+1} if i+1分别为在 O i X i Y i Z i O_iX_iY_iZ_i OiXiYiZi中作用在关节i和关节i+1上的合外力; i n ⃗ i {}^i\vec{n}_{i} in i i n ⃗ i + 1 {}^i\vec{n}_{i+1} in i+1分别为在 O i X i Y i Z i O_iX_iY_iZ_i OiXiYiZi中作用在关节i和关节i+1上的合外力矩; i p ⃗ i + 1 {}^i\vec{p}_{i+1} ip i+1为坐标系 O i + 1 X i + 1 Y i + 1 Z i + 1 O_{i+1}X_{i+1}Y_{i+1}Z_{i+1} Oi+1Xi+1Yi+

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

余加木

想喝蜜雪冰城柠檬水(≧≦)/

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值